It might seem that this technology is beneficial for any business, but it is not. Quite often projects fail to justify their will of public or private blockchain implementation. The key reason to use blockchain is the inefficiency of existing centralized solution that is slow, expensive, and lacks transparency and reliability. In other cases, blockchain isn’t required.
If you want a deeper look at Proof of Stake check out our detailed POS post. In short, while Proof of Work is an effective mechanism to secure the blockchain and provides a trustless consensus paradigm, it’s extremely energy intensive because of all the computing power required to solve hash problems. Also, while it was meant to be decentralized, it’s actually becoming more centralized as miners consolidate and massive mining setups eat up larger shares of winning blocks.
A blockchain is a continuously growing list of records called blocks, these blocks are linked and secured using cryptographic algorithms. Each block typically contains a hash (a link to a previous block), a timestamp as well as transaction data. Full nodes validate all the transactions, but are unable to settle the disagreements in regards to the order in which they were received. To prevent double-spending, the entire network needs to reach global consensus on the transaction order. It achieves this by using centralised parties or a decentralised proof of work or proof of stake algorithm (and its derivatives).
The Loom Network recently released their SDK which supports what they call “Dappchains,” an Ethereum layer-2 sidechain solution with each sidechain comprised of their own DPoS consensus mechanism. This enables highly scalable dapps, specifically games built using their tools. Loom emphasizes the earlier comment about sidechains enabling innovation in scalability, rather than providing it directly. Loom’s sidechains have their own set of rules and are used to offload computation from the primary Ethereum chain. Their sidechains are application-specific, meaning that they enable highly scalable dapps through an efficient consensus mechanism and can periodically be settled on the main Ethereum chain depending on their security needs. You can find more information on their model here.
I have a hard time swallowing that Bitcoin “isn’t a ledger”. That’s like saying “Bitcoin isn’t the blockchain”, and if you take the blockchain away from Bitcoin, you aren’t really left with much (including, sidechains). Perhaps Bitcoin isn’t a ledger *from the perspective* of individual transactions, but by the same logic, nothing that isn’t transaction data is.
Public blockchains are open, and therefore are likely to be used by very many entities and gain some network effects. To give a particular example, consider the case of domain name escrow. Currently, if A wants to sell a domain to B, there is the standard counterparty risk problem that needs to be resolved: if A sends first, B may not send the money, and if B sends first then A might not send the domain. To solve this problem, we have centralized escrow intermediaries, but these charge fees of three to six percent. However, if we have a domain name system on a blockchain, and a currency on the same blockchain, then we can cut costs to near-zero with a smart contract: A can send the domain to a program which immediately sends it to the first person to send the program money, and the program is trusted because it runs on a public blockchain. Note that in order for this to work efficiently, two completely heterogeneous asset classes from completely different industries must be on the same database - not a situation which can easily happen with private ledgers. Another similar example in this category is land registries and title insurance, although it is important to note that another route to interoperability is to have a private chain that the public chain can verify, btcrelay-style, and perform transactions cross-chain.
A public blockchain is ideal when the network must be truly decentralized, which means that no central entity controls the entry of the members on the network and the consensus mechanism is democratic. A democratic mechanism of consensus means that all members can become a minor and that these miners are in competition to add the blocks to the blockchain (at least when the mechanism of the evidence of the work is used).
“The consortium or company running a private blockchain can easily, if desired, change the rules of a blockchain, revert transactions, modify balances, etc. In some cases, e.g. national land registries, this functionality is necessary; there is no way a system would be allowed to exist where Dread Pirate Roberts can have legal ownership rights over a plainly visible piece of land, and so an attempt to create a government-uncontrollable land registry would in practice quickly devolve into one that is not recognized by the government itself….
“What is private blockchain?” is a logical question to ask after you found out that there is no such thing as one transcendental blockchain. What makes private networks different from the public is that only a selected group of people can access them. Hence, a random person has no chance to join a private ledger all of a sudden. To do so, a new participant needs an invitation or permission that can be issued by:
Many people believe this is the future of the blockchain. It maintains network security and allows for scalability. The biggest criticism is that it heavily favors those with more funds as smaller holders have no chance of becoming witnesses. But the reality is, smaller players have no hope of participating in Proof of Work either, as mining from your own laptop at home is no longer a reality. Smaller players get outcompeted by bigger players who have massive mining rigs. STEEM and EOS are examples of DPOS blockchains. Even Ethereum is moving to POS with its Casper project.
"I see quite a few use cases for private blockchains, and they definitely have their place. Traditional institutions won't switch to a completely public blockchain from one day to the other. A private blockchain is a great first step towards a more cryptographic future. The biggest advantages of private blockchains in comparison to centralized databases are the cryptographic auditing and known identities. Nobody can tamper with the data, and mistakes can be traced back. In comparison to a public blockchain it is much faster, cheaper and respects the company's privacy. As a conclusion, it's better to rely on a private blockchain than no cryptographic system at all. It has merits and pushes the blockchain terminology into the corporate world, making truly public blockchains a bit more likely for the future." 
This comparison might make you think that private blockchains are more reasonable to use as they are faster, cheaper, and protect the privacy of their members. However, in certain cases, transparency is more crucial than the speed of transaction approval. So, every company interested in moving their processes to a blockchain evaluates the needs and goals and only then selects a particular type of distributed ledger.
3) the argument ‘let’s harden internal IT as if it worked outside the firewall’ makes a ton of sense to me. We need to construct a lot of hoops for hackers to jump through, as permitter defense is not holding up anymore. And we need to make our systems anti-fragile. The blockchain data structure is a good tool, other P2P tools can be used too. Also, the blockchain has initiated a renaissance of crypto tech, like multisig, payment channels., HD wallets, hot-cold storage, and other innovations in key management.
In order to trade assets from the mainchain for assets from the sidechain, one would first need to send their assets on the mainchain to a certain address, effectively locking the assets up. After the transaction has been completed, a confirmation will be communicated to the sidechain. The sidechain will then release a certain amount of the assets on the sidechain to the user, equivalent to the amount of assets ‘locked up’ on the mainchain times the exchange rate. To trade the assets from the sidechain for assets of the mainchain, one would need to do the same, just the other way around.
In this case, you work directly with the given blockchain tools and stack. Assembly is required, so this isn’t for the faint of heart at this point, as many of the technologies are still developing and evolving. However, working directly with the blockchain provides a good degree of innovation, for example in building decentralized applications. This is where entrepreneurs are creating ambitious end-to-end, peer-to-peer applications, such as OpenBazaar (on Bitcoin), or Ujo Music (on Ethereum).
Liquid is the world's first federated sidechain that enables rapid, confidential, and secure bitcoin transfers. Participating exchanges and Bitcoin businesses deploy the software and hardware that make up the Liquid network, so that they can peg in and out of the Bitcoin blockchain and offer Liquid’s features to their traders. Liquid provides a more secure and efficient system for exchange-side bitcoin to move across the network.
Cuando esta transacción recibe las suficientes confirmaciones, se manda una notificación a la otra cadena de bloques (la que tú quieres utilizar) en el que se adjunta la prueba de que las monedas han sido enviadas por ti a esa dirección especial de la red. Tras ello, en la sidechain se creará, de forma automática, el mismo número exacto de activos que bitcoins se mandaron, dándote a ti el control de los mismos. Es decir, replica en el nuevo activo la cuantía que has enviado de la cadena principal a la sidechain. ¡Muy importante! Recordar que no se han creado o destruido nuevos bitcoins. Simplemente se han movido hasta que no estén usándose en la sidechain.
Note: This is also a pioneering effort towards increased adoption of smart contracts because while the traditional contracts have been around for a long time, smart contracts are relatively new, and there are gaps in how they are structured. If the smart contracts have the necessary legal expressions then that could serve as a template to bridge this gap in future.
Imagine over several hours, the camps produced a chain of messages that each required intensive Proof of Work. This means that the majority of the camps had to agree on this chain of messages and each camp can confidently trust the final outcome. It’s important to note here that Proof of Work does not care about the message itself, only that the nodes agreed to the final message. This majority network consensus keeps it secure and provides a solution to the Byzantine Generals Problem, leading to Byzantine Fault Tolerance.
Private institutions like banks realized that they could use the core idea of blockchain as a distributed ledger technology (DLT), and create a permissioned blockchain (private or federated), where the validator is a member of a consortium or separate legal entities of the same organization. The term blockchain in the context of permissioned private ledger is highly controversial and disputed. This is why the term distributed ledger technologies emerged as a more general term.
Blockchain Council is an authoritative group of subject experts and enthusiasts who are evangelizing the Blockchain Research and Development, Use Cases and Products and Knowledge for the better world. Blockchain council creates an environment and raise awareness among businesses, enterprises, developers, and society by educating them in the Blockchain space. We are a private de-facto organization working individually and proliferating Blockchain technology globally.    
Another technology that could see more widespread use in the coming years is side chains. A side chain is defined for one specific use case. There can be multiple side chains where different tasks are distributed accordingly for improving the efficiency of processing. Maybe one application needs to optimize for high speeds and another needs to optimize for large computations. In any case, side chains can be used to handle commercial blockchain usage. CryptoKitties would have greatly benefitted from an optimized high-speed side chain. At one point, they jammed up the Ethereum blockchain with 25% of all transactions coming from their application.
So if you want to create a more secure Sidechain, we would seriously need to have a look at incentivizing miners in other ways. These could include things such as the Sidechain raising outside funding from investors in order to pay the miners. Staggering mining award so miners have an incentive to keep mining as they will be paid later on rather than at the time or the Sidechain could issue its own mining award on top of the already existing transaction fees and essentially just become an Altcoin.

This approach isn’t fool-proof, but it’s not by mistake that the system looks the way it does today (that’s my history degree talking). Despite best technical efforts, human problems remain within the realm of probability. From http://www.nytimes.com/2009/01/15/books/15masl.html: “…blame cannot be easily assigned: not even the most sophisticated economists of the era could accurately predict disaster, let alone guard against it. The effects of a public herd mentality at the time of the [insert catastrophe here] are depicted, all too recognizably, as unstoppable.”
Public blockchains are just that, public. Anyone that wants to read, write, or join a public blockchain can do so. Public chains are decentralized meaning no one body has control over the network, ensuring the data can’t be changed once validated on the blockchain. Simply meaning, anyone, anywhere, can use a public blockchain to input transactions and data as long as they are connected to the network.
×