In private blockchains, only specific, pre-chosen entities have the ability to create new transactions on the chain (this is known as “write permissions”). Thus, a private blockchain is a closed network that offers constituents the benefits of the technology, but is not necessarily decentralized or distributed, even among its members. The extent to which each constituent can view (“read”) and create and validate transactions (“write”) is up to the developers of the chain.
Byzantine fault tolerance (BFT) is what keeps the blockchain fundamentally secure. For simplicity, let’s say there were 100 nodes in a blockchain network (there are currently about 10,500 full Bitcoin nodes in the world). What happens when one node wants to tamper with the latest block and say other Bitcoin users sent him a whole bunch of Bitcoin when they really didn’t?
That might sound like a problem, but it isn’t because the box can only be opened infrequently (two or three times a year), and a super-majority of miners must leave a note on the box in advance. This note states exactly where the miners intend to transfer the money. The “correct” note is automatically generated by sidechain software, and is easy to check.
Using Rootstock as an example, in order to transfer assets from one chain to the other a user on the parent first has to send their coins to a special output address where they will consequently become locked and un-spendable. Once the transaction is completed, SPV then confirms it across the chains and after waiting out a contest period, which is just a secondary method to help prevent double spending, the equivalent amount will be credited and spendable on the Sidechain and vice versa.
What is the difference between a public blockchain and a private blockchain? Does it matter? Which is better? Gallactic believes that currently there are pros and cons between both Private and Public Blockchains, but time and “convergence”, a term that is gaining prominence in the Blockchain Industry, is clearly showing that the lines between these categories, once clear, are starting to fade.
Jump up ^ Redrup, Yolanda (29 June 2016). "ANZ backs private blockchain, but won't go public". Australia Financial Review. Archived from the original on 3 July 2016. Retrieved 7 July 2016. Blockchain networks can be either public or private. Public blockchains have many users and there are no controls over who can read, upload or delete the data and there are an unknown number of pseudonymous participants. In comparison, private blockchains also have multiple data sets, but there are controls in place over who can edit data and there are a known number of participants.

Step back from the details for moment and consider what’s been described.  We now have a way to move coins from Bitcoin onto another platform (a sidechain) and move them back again.   That’s pretty much what we do when we move them to a wallet platform or an exchange.  The difference is that the “platform” they’ve been moved to is also a blockchain… so it has the possibility of decentralised security, visibility and to gain from other innovation in this space.
Unlike the other two-way peg mechanisms discussed in this article, SPV sidechains do not give direct control of real bitcoins on the main chain to a custodian; however, the ability for a majority of miners to produce and build upon fraudulent SPV proofs gives them indirect control over the funds, including the ability to send to themselves. Having said that, there are ways to mitigate this issue.
State of the art public Blockchain protocols based on Proof of Work (PoW) consensus algorithms are open source and not permissioned. Anyone can participate, without permission. (1) Anyone can download the code and start running a public node on their local device, validating transactions in the network, thus participating in the consensus process – the process for determining what blocks get added to the chain and what the current state is. (2) Anyone in the world can send transactions through the network and expect to see them included in the blockchain if they are valid. (3) Anyone can read transaction on the public block explorer. Transactions are transparent, but anonymous/pseudonumous.
A sidechain is a separate blockchain that is attached to its parent blockchain using a two-way peg. The two-way peg enables interchangeability of assets at a predetermined rate between the parent blockchain and the sidechain. The original blockchain is usually referred to as the ‘main chain’ and all additional blockchains are referred to as ‘sidechains’. The blockchain platform Ardor refers to its sidechains as ‘childchains’.
The differences between these types of blockchains are based on the levels of trust existing among the members of the network and the resulting level of security. Indeed, the higher the level of trust between the members of the network, the lighter the consensus mechanism (which aims to add the blocks to the blockchain securely). As we will see, there is no trust between the members of a public blockchain since it is open to everyone and inversely the confidence is much stronger on the private blockchain since members are pre-selected. In networks based on a blockchain, the level of trust among the members therefore directly impacts the structure and mechanisms of the network.
– we provide no uniqueness of names, unlike the domain registrars, social networks, namecoin, onename.io, etc. There is no uniqueness of names in real life either. Instead the identity is just a hash of a [json] object that contains a public key. Identity object can not be modified directly, but a new version of it can be created, pointing to a previous version. The owner of the identity object can optionally connect it with the real life credentials, e.g. the social account, internet domain, email, etc. by proving the proof of ownership of that account the way onetime.io does it, the way Google Analytics does it, etc. This allows a spectrum of identities from fully anonymous to fully disclosed and verified. This also allows a person to have multiple identities, for work, for social, for gaming, for interest-specific forums. To simulate OAUTH2, a new site-specific identity can be created and signed with person’s other identity.
The Cryptocurrency Data Feed, a partnership between Blockstream and Intercontinental Exchange (ICE), offers traders best in class real-time and historical cryptocurrency data from a strong and growing list of exchange partners worldwide. With over 25 exchanges, 133 crypto and fiat currency pairs, and over 200M order book updates every day, the Cryptocurrency Data Feed is the most comprehensive and robust source of global cryptocurrency data.
The first work on a cryptographically secured chain of blocks was described in 1991 by Stuart Haber and W. Scott Stornetta.[10][6] They wanted to implement a system where documents' timestamps could not be tampered with or backdated. In 1992, Bayer, Haber and Stornetta incorporated Merkle trees to the design, which improved its efficiency by allowing several documents to be collected into one block.[6][11]
In private blockchains, only specific, pre-chosen entities have the ability to create new transactions on the chain (this is known as “write permissions”). Thus, a private blockchain is a closed network that offers constituents the benefits of the technology, but is not necessarily decentralized or distributed, even among its members. The extent to which each constituent can view (“read”) and create and validate transactions (“write”) is up to the developers of the chain.

Incorporated in 2009 and headquartered in the USA, OpenXcell is an industry-leading software and mobile app development company known for delivering innovative software solutions and engaging mobile apps. Due to our unstoppable quest for making perfect mobile and web apps, we have slowly evolved into a one stop destination for all mobile and web app development needs. We have made a stellar reputation in the technology industry by adhering to ... Read more
Note: This is also a pioneering effort towards increased adoption of smart contracts because while the traditional contracts have been around for a long time, smart contracts are relatively new, and there are gaps in how they are structured. If the smart contracts have the necessary legal expressions then that could serve as a template to bridge this gap in future.
Public blockchains are also expensive, and not just in terms of money. The time and energy required to process transactions on public chains is more intensive than that of non-public chains. This is because every single node on the chain must authorize each new transaction before it is added to the chain, which requires a large amount of electricity and time (not to mention money).
Consider a proof-of-existence application, where you want to authenticate your document in the Ethereum (for example) network, but you do not need your document to be online. So, you will store the hash generated from your document in the blockchain, but the document itself will be in your local machine, out of any blockchain-related structured, being off-chain.
“RSK directly “plugs in” to achieve a perfect merged-mining and to ensure that cryptographic work, that will be discarded in Bitcoin mining, is reused in the first smart contract open-source platform secured by the Bitcoin network. RSK has an agreement with Bitcoin miners: we share with them 80% of the fees arising from transactions made within the smart contract network.”
“What is private blockchain?” is a logical question to ask after you found out that there is no such thing as one transcendental blockchain. What makes private networks different from the public is that only a selected group of people can access them. Hence, a random person has no chance to join a private ledger all of a sudden. To do so, a new participant needs an invitation or permission that can be issued by:
Peer-to-peer blockchain networks lack centralized points of vulnerability that computer crackers can exploit; likewise, it has no central point of failure. Blockchain security methods include the use of public-key cryptography.[4]:5 A public key (a long, random-looking string of numbers) is an address on the blockchain. Value tokens sent across the network are recorded as belonging to that address. A private key is like a password that gives its owner access to their digital assets or the means to otherwise interact with the various capabilities that blockchains now support. Data stored on the blockchain is generally considered incorruptible.[1]
In order to trade assets from the mainchain for assets from the sidechain, one would first need to send their assets on the mainchain to a certain address, effectively locking the assets up. After the transaction has been completed, a confirmation will be communicated to the sidechain. The sidechain will then release a certain amount of the assets on the sidechain to the user, equivalent to the amount of assets ‘locked up’ on the mainchain times the exchange rate. To trade the assets from the sidechain for assets of the mainchain, one would need to do the same, just the other way around.
In this case, you work directly with the given blockchain tools and stack. Assembly is required, so this isn’t for the faint of heart at this point, as many of the technologies are still developing and evolving. However, working directly with the blockchain provides a good degree of innovation, for example in building decentralized applications. This is where entrepreneurs are creating ambitious end-to-end, peer-to-peer applications, such as OpenBazaar (on Bitcoin), or Ujo Music (on Ethereum).
Zestminds is an IT consulting and services provider, providing end-to-end consulting for global clients. Zestminds has partnered with several start-ups to SME in building their next generation information infrastructure for competitive advantage. The Zestminds portfolio of services includes legacy application maintenance, large application development, e-strategy consulting and solutions. The offshore Model of the company leverages talent and inf ... Read more
Jump up ^ Kopfstein, Janus (12 December 2013). "The Mission to Decentralize the Internet". The New Yorker. Archived from the original on 31 December 2014. Retrieved 30 December 2014. The network's 'nodes'—users running the bitcoin software on their computers—collectively check the integrity of other nodes to ensure that no one spends the same coins twice. All transactions are published on a shared public ledger, called the 'block chain.'
Public blockchains provide a way to protect the users of an application from the developers, establishing that there are certain things that even the developers of an application have no authority to do. From a naive standpoint, it may be hard to understand why an application developer would want to voluntarily give up power and hamstring themselves. However, more advanced economic analysis provides two reasons why, in Thomas Schelling's words, weakness can be a strength. First, if you explicitly make it harder or impossible for yourself to do certain things, then others will be more likely to trust you and engage in interactions with you, as they are confident that those things are less likely to happen to them. Second, if you personally are being coerced or pressured by another entity, then saying "I have no power to do this even if I wanted to" is an important bargaining chip, as it discourages that entity from trying to compel you to do it. A major category of pressure or coercion that application developers are at risk of is that by governments, so "censorship resistance" ties strongly into this kind of argument.
Public blockchains are open, and therefore are likely to be used by very many entities and gain some network effects. To give a particular example, consider the case of domain name escrow. Currently, if A wants to sell a domain to B, there is the standard counterparty risk problem that needs to be resolved: if A sends first, B may not send the money, and if B sends first then A might not send the domain. To solve this problem, we have centralized escrow intermediaries, but these charge fees of three to six percent. However, if we have a domain name system on a blockchain, and a currency on the same blockchain, then we can cut costs to near-zero with a smart contract: A can send the domain to a program which immediately sends it to the first person to send the program money, and the program is trusted because it runs on a public blockchain. Note that in order for this to work efficiently, two completely heterogeneous asset classes from completely different industries must be on the same database - not a situation which can easily happen with private ledgers. Another similar example in this category is land registries and title insurance, although it is important to note that another route to interoperability is to have a private chain that the public chain can verify, btcrelay-style, and perform transactions cross-chain.

Bitdeal is a bitcoin cryptocurrency exchange software & Blockchain development company. The main focus of the firm is to reduce the risks in bitcoin trading and to encourage new bitcoin exchange startups by providing a well-developed bitcoin exchange script or a cryptocurrency exchange software.  Being a cryptocurrency exchange software solution, bitdeal has covered around 50+ countries around the world, and have collected more than 200+ ... Read more


Private blockchains are valuable for solving efficiency, security and fraud problems within traditional financial institutions, but only incrementally. It’s not very likely that private blockchains will revolutionize the financial system. Public blockchains, however, hold the potential to replace most functions of traditional financial institutions with software, fundamentally reshaping the way the financial system works.
Recordemos, como hemos mencionado anteriormente, que actualmente son cientos los proyectos y monedas alternativas que trabajan con su propia cadena de bloques, totalmente desconectadas de la de Bitcoin. Todas con su cotización volatil. El problema de estas monedas es que ninguna de ellas dispone del efecto red ni de la seguridad que sí tiene Bitcoin. De hecho muchas, pese a haber implementado propuestas interesantes, se quedan en nada, con miles de horas y esfuerzo “tirado a la basura”. Incluso algunas de ellas han replicado el codigo de Bitcoin, pero también los fallos que en ese momento pudiera tener y mientras que en Bitcoin si se han solucionado, en esa Altcoin no.

Consider a proof-of-existence application, where you want to authenticate your document in the Ethereum (for example) network, but you do not need your document to be online. So, you will store the hash generated from your document in the blockchain, but the document itself will be in your local machine, out of any blockchain-related structured, being off-chain.
Instead of adding new features directly to the bitcoin blockchain, sidechains allow developers to attach new features to a separate chain. Since the chains are still attached to the bitcoin blockchain, the features can take advantage of the cryptocurrency's network effects and test those applications, without harming the main network should vulnerabilities arise.
It’s the IBM “blockchain”. Basically Apache Kafka queue service, where they have modified the partitions. Each partition is an ordered, immutable sequence of messages which are continuously appended. They added some “nodes” to clean the inputs and voila; blockchain! We should add that there are no blocks, but batches of transactions are renamed to fit the hype better. Since everything gets written in one queue at the end of the day, IBM offers the bluemix cloud server (priced at 120.000$ per year) to host the service. Smaller test packages with a couple of input cleaning nodes go reportedly for 30.000$.
Public blockchains provide a way to protect the users of an application from the developers, establishing that there are certain things that even the developers of an application have no authority to do. From a naive standpoint, it may be hard to understand why an application developer would want to voluntarily give up power and hamstring themselves. However, more advanced economic analysis provides two reasons why, in Thomas Schelling's words, weakness can be a strength. First, if you explicitly make it harder or impossible for yourself to do certain things, then others will be more likely to trust you and engage in interactions with you, as they are confident that those things are less likely to happen to them. Second, if you personally are being coerced or pressured by another entity, then saying "I have no power to do this even if I wanted to" is an important bargaining chip, as it discourages that entity from trying to compel you to do it. A major category of pressure or coercion that application developers are at risk of is that by governments, so "censorship resistance" ties strongly into this kind of argument.
I said above that you can build sophisticated rules into Bitcoin transactions to specify how ownership is proved. However, the Bitcoin scripting language is deliberately limited and many ideas in the Smart Contracts space are difficult or impossible to implement. So projects such as Ethereum are building an entirely new infrastructure to explore these ideas
Parangat Technologies stands tall amongst mobile app development giants. Parangat team of top iPad developers pays special attention to communication and requirement analysis in order to understand project complexity which leads to the foundation of a great application/game and helps in creating long term value for the iPad app user as well as our clients. It has the satisfaction of being one of the leading names in enterprise-level apps devel ... Read more
Note: This is also a pioneering effort towards increased adoption of smart contracts because while the traditional contracts have been around for a long time, smart contracts are relatively new, and there are gaps in how they are structured. If the smart contracts have the necessary legal expressions then that could serve as a template to bridge this gap in future.
There has been tremendous interest in blockchain, the technology on which Bitcoin functions. Nakamoto developed the blockchain as an acceptable solution to the game theory puzzle – Byzantine General’s Problem. This lead to a number of firms adopting the technology in different ways to solve real world issues, wherever there was an element of trust involved. Majority of them could be relating to the ability to provide proof of ownership – for documents, software modules/licenses, voting etc.
The paper outlines some critical developments and associated problems that were both currently trending and forward-thinking at the time, many of them still very much relevant today. At the time, altcoins were quickly gaining prominence and the problems associated with their volatility, security, and lack of interoperability with Bitcoin raised concerns. The paper primarily addressed 6 issues that pegged sidechains aimed to provide a solution:
Altcoin Altcoins Beginners Binance Binance Exchange Bitcoin Bitcoin cash Bitcoin Exchanges Bitcoin Wallet Address Bitcoin Wallets Bitfinex Blockchain BTC Buy bitcoins Changelly Coinomi Cryptocurrency Debit Card Decentralised exchange Desktop Wallet ERC20 ETH Ethereum Exchange Fork Hardware Wallet HD Wallets How to India Ledger Ledger Nano S Localbitcoins Mobile Wallet MyEtherWallet NEO Paper Wallet Privacy Private Key Review Security Trading Trezor Tutorial Wallet Web Wallet
×