These kinds of blockchains are forks of the original implementations but deployed in a permissioned manner. Mainly hyped because the companies behind these chains want to onboard corporations in order to generate buzz around their their chain. It’s tolerable for proof of concepts or if they plan to move to public as soon as possible; otherwise they are just using the wrong set of tools for the job.

Frankly, secure implementation of Bitcoin is already a pain in the ass .. adding more complexity just seems like the wrong move at this point. It’s already trying to be a currency, a networking protocol and a client in the same codebase. Adding turing complete (or not) scripts with arbitrary outcomes, multiple versions of the official client cooperating, multiple clients, and now multiple blockchains is basically the nail in the coffin in terms of widespread implementation.

A public blockchain is ideal when the network must be truly decentralized, which means that no central entity controls the entry of the members on the network and the consensus mechanism is democratic. A democratic mechanism of consensus means that all members can become a minor and that these miners are in competition to add the blocks to the blockchain (at least when the mechanism of the evidence of the work is used).
It might seem that this technology is beneficial for any business, but it is not. Quite often projects fail to justify their will of public or private blockchain implementation. The key reason to use blockchain is the inefficiency of existing centralized solution that is slow, expensive, and lacks transparency and reliability. In other cases, blockchain isn’t required.
Jump up ^ Kopfstein, Janus (12 December 2013). "The Mission to Decentralize the Internet". The New Yorker. Archived from the original on 31 December 2014. Retrieved 30 December 2014. The network's 'nodes'—users running the bitcoin software on their computers—collectively check the integrity of other nodes to ensure that no one spends the same coins twice. All transactions are published on a shared public ledger, called the 'block chain.'
A diferencia con la, hasta ahora, plataforma estrella de smart contracts Ethereum, otra de las diferencias más importantes de Lisk es que, en Lisk, cada aplicación corre sobre su propia sidechain y no sobre una única cadena, cómo es el caso de Ethereum. Por lo tanto, un entorno propio e independiente que podrá exprimir cada desarrollador para cada DAPP desarrollada con un backend en JS/NodeJS y un frontend HTML/CSS/JS.
Jump up ^ Iansiti, Marco; Lakhani, Karim R. (January 2017). "The Truth About Blockchain". Harvard Business Review. Harvard University. Archived from the original on 18 January 2017. Retrieved 17 January 2017. The technology at the heart of bitcoin and other virtual currencies, blockchain is an open, distributed ledger that can record transactions between two parties efficiently and in a verifiable and permanent way.
We are a reputed software development agency that believes in delivering efficient and reliable digital solutions to all kind of businesses. If you're having a creative startup idea with a great vision, we will offer you the wings to fly really high in the practical world. If you're an already well-established enterprise, we will help you to win the kings crown and maintain its shine. We Design, Architect and Develop digital solutions ... Read more
The creation of sidechains have been a direct result of scalability issues associated with the main blockchain for projects such as Ethereum. Making sidechains increasingly popular way to speed up transactions. Lisk was the first decentralized application (dapp) to implement sidechains. With Lisk, each dapp created exists on its own sidechain without interfering with the mainchain.

Over the last year the concept of “private blockchains” has become very popular in the broader blockchain technology discussion. Essentially, instead of having a fully public and uncontrolled network and state machine secured by cryptoeconomics (eg. proof of work, proof of stake), it is also possible to create a system where access permissions are more tightly controlled, with rights to modify or even read the blockchain state restricted to a few users, while still maintaining many kinds of partial guarantees of authenticity and decentralization that blockchains provide. Such systems have been a primary focus of interest from financial institutions, and have in part led to a backlash from those who see such developments as either compromising the whole point of decentralization or being a desperate act of dinosaurish middlemen trying to stay relevant (or simply committing the crime of using a blockchain other than Bitcoin). However, for those who are in this fight simply because they want to figure out how to best serve humanity, or even pursue the more modest goal of serving their customers, what are the practical differences between the two styles?
Transactions are cheaper, since they only need to be verified by a few nodes that can be trusted to have very high processing power, and do not need to be verified by ten thousand laptops. This is a hugely important concern right now, as public blockchains tend to have transaction fees exceeding $0.01 per tx, but it is important to note that it may change in the long term with scalable blockchain technology that promises to bring public-blockchain costs down to within one or two orders of magnitude of an optimally efficient private blockchain system
Ardor is a blockchain platform predicated on childchains (sidechains) that use proof of stake (PoS) consensus. It uses the primary chain as a security chain and the childchains for processing transactions to increase scalability. Their design is specifically focused on speed and efficiency through PoS consensus and removing blockchain bloat through pruning.
Nikolai Hampton pointed out in Computerworld that "There is also no need for a '51 percent' attack on a private blockchain, as the private blockchain (most likely) already controls 100 percent of all block creation resources. If you could attack or damage the blockchain creation tools on a private corporate server, you could effectively control 100 percent of their network and alter transactions however you wished."[9] This has a set of particularly profound adverse implications during a financial crisis or debt crisis like the financial crisis of 2007–08, where politically powerful actors may make decisions that favor some groups at the expense of others,[51][52] and "the bitcoin blockchain is protected by the massive group mining effort. It's unlikely that any private blockchain will try to protect records using gigawatts of computing power—it's time consuming and expensive."[9] He also said, "Within a private blockchain there is also no 'race'; there's no incentive to use more power or discover blocks faster than competitors. This means that many in-house blockchain solutions will be nothing more than cumbersome databases."[9]
Plasma is a proposed framework for incentivized and enforced execution of smart contracts which is scalable to a significant amount of state updates per second (potentially billions) enabling the blockchain to be able to represent a significant amount of decentralized financial applications worldwide. These smart contracts are incentivized to continue operation autonomously via network transaction fees, which is ultimately reliant upon the underlying blockchain (e.g. Ethereum) to enforce transactional state transitions.
What Bitcoin’s development team is essentially doing through feature-creep is forcing everyone in the non-tech world to use Bitcoin through commercial proxies to avoid all this complexity (crypto-what? security? sidechain?), which effectively results in the loss of security, relative anonymity and decentralized properties that helped to make it interesting in the first place.
Over the last year the concept of “private blockchains” has become very popular in the broader blockchain technology discussion. Essentially, instead of having a fully public and uncontrolled network and state machine secured by cryptoeconomics (eg. proof of work, proof of stake), it is also possible to create a system where access permissions are more tightly controlled, with rights to modify or even read the blockchain state restricted to a few users, while still maintaining many kinds of partial guarantees of authenticity and decentralization that blockchains provide. Such systems have been a primary focus of interest from financial institutions, and have in part led to a backlash from those who see such developments as either compromising the whole point of decentralization or being a desperate act of dinosaurish middlemen trying to stay relevant (or simply committing the crime of using a blockchain other than Bitcoin). However, for those who are in this fight simply because they want to figure out how to best serve humanity, or even pursue the more modest goal of serving their customers, what are the practical differences between the two styles?

It doesn’t matter if you’re moving $1bn or 0.01c across the Bitcoin network, you get the same security guarantees.   And you pay for this in fees and time.   What if you were prepared to trade safety for speed?   Today, your only real option is to send the coins to a centralized wallet provider, whom you must trust not to lose or steal your coins. You can then do all the transactions you like on their books, with their other customers and you never need touch the Bitcoin blockchain. But now you lose all the benefits of a decentralized value-transfer network.
I said above that you can build sophisticated rules into Bitcoin transactions to specify how ownership is proved. However, the Bitcoin scripting language is deliberately limited and many ideas in the Smart Contracts space are difficult or impossible to implement. So projects such as Ethereum are building an entirely new infrastructure to explore these ideas
Write permissions are kept centralized to one organization. Read permissions may be public or restricted to an arbitrary extent. Example applications include database management, auditing, etc. which are internal to a single company, and so public readability may in many cases not be necessary at all. In other cases public audit ability is desired. Private blockchains are a way of taking advantage of blockchain technology by setting up groups and participants who can verify transactions internally. This puts you at the risk of security breaches just like in a centralized system, as opposed to public blockchain secured by game theoretic incentive mechanisms. However, private blockchains have their use case, especially when it comes to scalability and state compliance of data privacy rules and other regulatory issues. They have certain security advantages, and other security disadvantages (as stated before).
Space-O is one stop solution for all your mobile software development needs. From concept to development to marketing to ongoing maintenance, Space-O delivers. We are now one of the top mobile app development companies in India by following the success mantra of “Design-led-Engineering”. We work with best-of-the-best fine art grads from top design institutes such as NID and best-of-the-best engineers. Space-O's ability ... Read more
@quinn – thanks for the comment. I probably didn’t write clearly enough… I was trying to point out that none of the higher-level concepts we’re familiar with (addresses, bitcoins, the “ledger”, etc) actually exist at the protocol level…. it’s just transactions, transaction outputs, unspent transaction outputs, etc… they combine to create the illusion we’re all familiar with.
Quest Global Technologies is a leading software development organization that works on Blockchain, customized ERP, Mobile Apps, Salesforce and Web Development. Quest Global Technologies has been rated as TOP mobile application developers by Appfutura and is covered by Entrepreneur Magazine. Quest Global Technologies has the vision to make its clients successful by leveraging technology to increase sales, automation and reduce wastage. www.cryp ... Read more
Sidechains solve a lot of problems, but at what cost? The introduction of sidechains makes things even more complex and much harder to understand for those who are not actively involved in the blockchain space. This also divides assets, no more “one chain, one asset” adage, which further complicates things. And on a network level there are multiple independent unsynchronised blockchains interacting with each other.
@gendal, good question. Think of the identity hash as a bitcoin address, it is indeed public. So to assert anything with this identity you need to sign the object you are creating or changing with the identity’s private key. Specifically it is a private key that corresponds to a public key that you published in your identity’s object (json). The signature is not placed on the bitcoin transaction, as OP_RETURN has only 40 bytes. The signature is added to a [json] object that is modified with this identity. If you see any fault with this, please let me know.
Perhaps blocks are created faster on that sidechain. Perhaps transaction scripts are “turing complete”. Perhaps you have to pay fees to incent those securing that sidechain. Who knows. The rules can be whatever those running that sidechain want them to be. The only rule that matters is that the sidechain agrees to follow the convention that if you can prove you put some Bitcoins out of reach on the Bitcoin network, the same number will pop into existence on the sidechain.
First, clear your head of anything related to money, currency or payments. And clear your head of the word ledger, too. The mind-bending secret of Bitcoin is that there actually isn’t a ledger! The only data structures that matter are transactions and blocks of transactions. And it’s important to get this clear in your head if sidechains are going to make sense.
It might seem that this technology is beneficial for any business, but it is not. Quite often projects fail to justify their will of public or private blockchain implementation. The key reason to use blockchain is the inefficiency of existing centralized solution that is slow, expensive, and lacks transparency and reliability. In other cases, blockchain isn’t required.
“What is private blockchain?” is a logical question to ask after you found out that there is no such thing as one transcendental blockchain. What makes private networks different from the public is that only a selected group of people can access them. Hence, a random person has no chance to join a private ledger all of a sudden. To do so, a new participant needs an invitation or permission that can be issued by:
The cheapest and most simple option is doing calculations on your local network (off-chain) and integrating with main blockchain by sending the results. It has flaws; you cannot live full advantage of blockchain as we do in bitcoin, because you will still have existing constraints of your current system. Despite all this, it is still a valid option; perhaps you won't need all the features of blockchain technology. Perhaps it is just enough to use blockchain only for your pain points. Factom can be considered under that kind of option. They used bitcoin wisely in their design. They hold the actual mass data in their network and utilize stability of bitcoin in their solution. This project is so successful that at coindesk magazine, it is saying that Factom can be used for the land titles in Honduras. http://www.coindesk.com/debate-f...

The sidechains vision of the future is of a vast globe-spanning decentralized network of many blockchains, an intertwined cable rather than a single strand, each with its own protocol, rules, and features — but all of them backed by Bitcoin, and protected by the Bitcoin mining network, as the US dollar was once backed by gold. Sidechains can also be used to prototype changes to the fundamental Bitcoin blockchain. One catch, though: this will require a small tweak to the existing Bitcoin protocol.

What if we could run heavy computations in a more centralized fashion, say on a single server, and then periodically integrate the results onto the main blockchain for posterity. We temporarily expose some vulnerability while the parallel server runs the heavy computation, but we get a massive benefit in that we don’t have to run the computation on chain, and simply need to store the results for future verification. This is the general premise behind Truebit. We won’t get into all the details of Truebit but there is a concept of challengers, who check to see the computations that were made have high fidelity.
(function(){"use strict";function s(e){return"function"==typeof e||"object"==typeof e&&null!==e}function a(e){return"function"==typeof e}function l(e){X=e}function u(e){G=e}function c(){return function(){r.nextTick(p)}}function f(){var e=0,n=new ne(p),t=document.createTextNode("");return n.observe(t,{characterData:!0}),function(){t.data=e=++e%2}}function d(){var e=new MessageChannel;return e.port1.onmessage=p,function(){e.port2.postMessage(0)}}function h(){return function(){setTimeout(p,1)}}function p(){for(var e=0;et.length)&&(n=t.length),n-=e.length;var r=t.indexOf(e,n);return-1!==r&&r===n}),String.prototype.startsWith||(String.prototype.startsWith=function(e,n){return n=n||0,this.substr(n,e.length)===e}),String.prototype.trim||(String.prototype.trim=function(){return this.replace(/^[\s\uFEFF\xA0]+|[\s\uFEFF\xA0]+$/g,"")}),String.prototype.includes||(String.prototype.includes=function(e,n){"use strict";return"number"!=typeof n&&(n=0),!(n+e.length>this.length)&&-1!==this.indexOf(e,n)})},"./shared/require-global.js":function(e,n,t){e.exports=t("./shared/require-shim.js")},"./shared/require-shim.js":function(e,n,t){var r=t("./shared/errors.js"),i=(this.window,!1),o=null,s=null,a=new Promise(function(e,n){o=e,s=n}),l=function(e){if(!l.hasModule(e)){var n=new Error('Cannot find module "'+e+'"');throw n.code="MODULE_NOT_FOUND",n}return t("./"+e+".js")};l.loadChunk=function(e){return a.then(function(){return"main"==e?t.e("main").then(function(e){t("./main.js")}.bind(null,t))["catch"](t.oe):"dev"==e?Promise.all([t.e("main"),t.e("dev")]).then(function(e){t("./shared/dev.js")}.bind(null,t))["catch"](t.oe):"internal"==e?Promise.all([t.e("main"),t.e("internal"),t.e("qtext2"),t.e("dev")]).then(function(e){t("./internal.js")}.bind(null,t))["catch"](t.oe):"ads_manager"==e?Promise.all([t.e("main"),t.e("ads_manager")]).then(function(e){undefined,undefined,undefined,undefined,undefined,undefined,undefined,undefined,undefined,undefined,undefined}.bind(null,t))["catch"](t.oe):"publisher_dashboard"==e?t.e("publisher_dashboard").then(function(e){undefined,undefined}.bind(null,t))["catch"](t.oe):"content_widgets"==e?Promise.all([t.e("main"),t.e("content_widgets")]).then(function(e){t("./content_widgets.iframe.js")}.bind(null,t))["catch"](t.oe):void 0})},l.whenReady=function(e,n){Promise.all(window.webpackChunks.map(function(e){return l.loadChunk(e)})).then(function(){n()})},l.installPageProperties=function(e,n){window.Q.settings=e,window.Q.gating=n,i=!0,o()},l.assertPagePropertiesInstalled=function(){i||(s(),r.logJsError("installPageProperties","The install page properties promise was rejected in require-shim."))},l.prefetchAll=function(){t("./settings.js");Promise.all([t.e("main"),t.e("qtext2")]).then(function(){}.bind(null,t))["catch"](t.oe)},l.hasModule=function(e){return!!window.NODE_JS||t.m.hasOwnProperty("./"+e+".js")},l.execAll=function(){var e=Object.keys(t.m);try{for(var n=0;n=c?n():document.fonts.load(u(o,'"'+o.family+'"'),a).then(function(n){1<=n.length?e():setTimeout(t,25)},function(){n()})}t()});var w=new Promise(function(e,n){l=setTimeout(n,c)});Promise.race([w,m]).then(function(){clearTimeout(l),e(o)},function(){n(o)})}else t(function(){function t(){var n;(n=-1!=y&&-1!=g||-1!=y&&-1!=v||-1!=g&&-1!=v)&&((n=y!=g&&y!=v&&g!=v)||(null===f&&(n=/AppleWebKit\/([0-9]+)(?:\.([0-9]+))/.exec(window.navigator.userAgent),f=!!n&&(536>parseInt(n[1],10)||536===parseInt(n[1],10)&&11>=parseInt(n[2],10))),n=f&&(y==b&&g==b&&v==b||y==x&&g==x&&v==x||y==j&&g==j&&v==j)),n=!n),n&&(null!==_.parentNode&&_.parentNode.removeChild(_),clearTimeout(l),e(o))}function d(){if((new Date).getTime()-h>=c)null!==_.parentNode&&_.parentNode.removeChild(_),n(o);else{var e=document.hidden;!0!==e&&void 0!==e||(y=p.a.offsetWidth,g=m.a.offsetWidth,v=w.a.offsetWidth,t()),l=setTimeout(d,50)}}var p=new r(a),m=new r(a),w=new r(a),y=-1,g=-1,v=-1,b=-1,x=-1,j=-1,_=document.createElement("div");_.dir="ltr",i(p,u(o,"sans-serif")),i(m,u(o,"serif")),i(w,u(o,"monospace")),_.appendChild(p.a),_.appendChild(m.a),_.appendChild(w.a),document.body.appendChild(_),b=p.a.offsetWidth,x=m.a.offsetWidth,j=w.a.offsetWidth,d(),s(p,function(e){y=e,t()}),i(p,u(o,'"'+o.family+'",sans-serif')),s(m,function(e){g=e,t()}),i(m,u(o,'"'+o.family+'",serif')),s(w,function(e){v=e,t()}),i(w,u(o,'"'+o.family+'",monospace'))})})},void 0!==e?e.exports=a:(window.FontFaceObserver=a,window.FontFaceObserver.prototype.load=a.prototype.load)}()},"./third_party/tracekit.js":function(e,n){/**
Sidechains have been a concept for a relatively long time in the cryptocurrency space. The idea took flight in 2014 when several eminent figures in cryptography and early digital currency innovations published an academic paper introducing Pegged Sidechains. Several of the authors are central figures at Blockstream, who is at the forefront of innovation in sidechains and other Bitcoin developments.

A sidechain is a separate blockchain that is attached to its parent blockchain using a two-way peg. The two-way peg enables interchangeability of assets at a predetermined rate between the parent blockchain and the sidechain. The original blockchain is usually referred to as the ‘main chain’ and all additional blockchains are referred to as ‘sidechains’. The blockchain platform Ardor refers to its sidechains as ‘childchains’.
“The consortium or company running a private blockchain can easily, if desired, change the rules of a blockchain, revert transactions, modify balances, etc. In some cases, e.g. national land registries, this functionality is necessary; there is no way a system would be allowed to exist where Dread Pirate Roberts can have legal ownership rights over a plainly visible piece of land, and so an attempt to create a government-uncontrollable land registry would in practice quickly devolve into one that is not recognized by the government itself….
×