Contrary to popular belief, aided by deceptive blockchain marketing, blockchains are not a good solution for storing data. Each piece of information that you store in the blockchain sits in hundreds or more nodes (more than 100,000 in the case of Bitcoin) making it an extremely costly solution. This is why the Iryo Network doesn’t store data on blockchain but instead, uses blockchain to ensure the transparency of transactions. As a disclaimer, competitors also don’t save medical data on the chain itself (even those who use private chains). Instead, only the fingerprint aspect of a medical record file or a hash is stored on the blockchain.

@quinn – thanks for the comment. I probably didn’t write clearly enough… I was trying to point out that none of the higher-level concepts we’re familiar with (addresses, bitcoins, the “ledger”, etc) actually exist at the protocol level…. it’s just transactions, transaction outputs, unspent transaction outputs, etc… they combine to create the illusion we’re all familiar with.
Sidechains offer a way for new, more radical settings and technologies to be implemented without affecting the main chain. This ensures that the main chain is as secure as possible whilst providing the freedom to explore options which would never be considered for use on the main chain. Sidechains should be quite powerful as they provide cases like anonymity, transparency, confirmation times and turing complete options like rootstock all whilst utilizing bitcoins rather than relying on the hashing power (security) of some far less secure alt coin. That being said… there is quite some controvery regarding blockstream’s funding of most of the core development team and their inflexiblity regarding the max blocksize. This inflexibility has directly contributed to the success of ethereum and it remains to be seen whether the dream of bitcoin maximalism will survive long enough for sidechains with all of the promised functionality to be rolled out. I am skeptical.
Bitcoin está demostrando un potencial enorme, y desarrolladores de todo el mundo quieren llevar esta tecnología aún más lejos, por ejemplo con los smart contracts turing completo o las llamadas smart property. El problema es que Bitcoin tiene un lenguaje de programación deliberadamente limitado. Además sus transacciones se confirman relativamente despacio, cada 10 minutos. Y ya por último y muy importante, su cadena de bloques está saturándose de transacciones debido a la creciente fama de Bitcoin.
The problem with Ethereum is that transactions are executed one after another. However, Aelf differs in its parallel computing blockchain capability. It scales transaction computing power inside a single side chain. Now imagine the power when you have thousands of side chains. For any unrelated transactions, it is safe to execute them concurrently.
Saying that, Interoperability has been the missing link in conquering the obstacles faced by both private and public blockchains by empowering them to interact and exchange values across platforms seamlessly. Developers use of the Gallactic blockchain technology, that allow for private and public blockchains within its eco-system, will drive the potential to combine both public and private blockchains with innovative new solutions, designed to accomplish cross-chain exchange and greater compatibility is the way forward for all parties and their concerns.
The first work on a cryptographically secured chain of blocks was described in 1991 by Stuart Haber and W. Scott Stornetta.[10][6] They wanted to implement a system where documents' timestamps could not be tampered with or backdated. In 1992, Bayer, Haber and Stornetta incorporated Merkle trees to the design, which improved its efficiency by allowing several documents to be collected into one block.[6][11]
Side-chain is another blockchain for one blockchain. To use side-chain of Bitcoin, for instance, you need to move BTC from the original chain to the side-chain. Then, BTC on the original chain is locked and the same amount of BTC on the side-chain appears. This is how BTC can be used/tested on another chain where we use some features different from the original ones.
Blockchain, trust, decentralization, Bitcoin, transparency, anonymity, blockchain, blockchain, blockchain. These words seem to appear randomly on the Web regardless the theme of an article you read. Don’t you know how to implement blockchain in art? There’s definitely someone who can tell you. Do you wonder how banking can benefit from blockchain? No worries, some projects already do it – just search for the use cases.
A big thanks to Diego Salvador for helping me write this episode. Him and the rest of the team over at Rootstock are doing fantastic work with cryptocurrency and Sidechains. We wish them all the best. I'll be sure to leave a link to their website in the top of the description so you can go check it out and learn more if you wish. And as always, be sure to subscribe and I will see you next time.

My chief concern is not with the concept of side chains per se (yet). I have still much to learn about how they are being considered. I am only concerned with the way the concept is being presented here. However, I am sure that much of this was due to space restrictions as much as anything. The concept of side chains is an intriguing one. It is also clearly attempting to address a major problem with the whole Bitcoin scheme- namely the verification latency it introduces for transactions. This is only one of the hurdles facing Bitcoins acceptance into the world of commerce, but it is a considerable one.
@tetsu – not sure what you mean. My reading of the sidechains paper is that the worst case scenario is that an attacker manages to “reanimate” Bitcoins on the main blockchain that had been sent to the sidechain… but that would be the attacker stealing the coins from the rightful owner on the sidechain. From Bitcoin’s perspective, the coins were always going to be reanimated…. so the risk is entirely borne by the holder(s) on the sidechain. Am I missing something?
The main point of a side-chain is to allow cryptocurrency networks to scale and interact with one-another. For example alt-coins and Bitcoin run on separate chains, however side chains allow for these separate currencies to be transferred through these two-way 'portal's or interfaces via a fixed conversion amount. Added benefits of side-chains are different asset classes like,stocks, bonds etc being integrated through a converted price onto the main chain, along with additional functionality like smart contracts,unique D-Apps, micro-payments and security updates that can be later incorporated into the primary network from these side-chains.
Many blockchain enthusiasts believe in the value of networks that are not only decentralized — which most closely resembles the current model of the Internet — but distributed. This includes Tim Berners-Lee, who founded the World Wide Web in 1989. Berners-Lee has proposed that blockchains can be used to reinvent the web in a more distributed and peer-to-peer fashion.
So if you want to create a more secure Sidechain, we would seriously need to have a look at incentivizing miners in other ways. These could include things such as the Sidechain raising outside funding from investors in order to pay the miners. Staggering mining award so miners have an incentive to keep mining as they will be paid later on rather than at the time or the Sidechain could issue its own mining award on top of the already existing transaction fees and essentially just become an Altcoin.

Performance at scale: It is not uncommon for large businesses to process 100,000’s of transactions per second (TPS). Therefore, enterprise blockchains need to scale so that they can deliver performance accordingly. To achieve this, they can compartmentalize processes using containers or similar approaches. Read more about this requirement in this article “Enterprise blockchain ready to go live”.
– The transactions added to the blockchain are public: the whole world (Member of the network as non-members) can access transactions that are added to the blockchain. The information of the transactions is made public for the miners who do not know the other members, to check the conformity (for example that the person who has created a transaction holds enough bitcoins). These transactions are obviously not nominative, only your public key appears, but if someone knows your public key, he will be able to find all the transactions that you have created.

What is the difference between a public blockchain and a private blockchain? Does it matter? Which is better? Gallactic believes that currently there are pros and cons between both Private and Public Blockchains, but time and “convergence”, a term that is gaining prominence in the Blockchain Industry, is clearly showing that the lines between these categories, once clear, are starting to fade.
×