State of the art public Blockchain protocols based on Proof of Work (PoW) consensus algorithms are open source and not permissioned. Anyone can participate, without permission. (1) Anyone can download the code and start running a public node on their local device, validating transactions in the network, thus participating in the consensus process – the process for determining what blocks get added to the chain and what the current state is. (2) Anyone in the world can send transactions through the network and expect to see them included in the blockchain if they are valid. (3) Anyone can read transaction on the public block explorer. Transactions are transparent, but anonymous/pseudonumous.
Unfortunately our second option cannot be done yet, because to use these sidechains, main chain (here it is bitcoin) needs to do some upgrade (soft fork). By the way, upgrades in public blockchains are very painful yet. There will be a user activated soft fork (UASF) on August 1. All bitcoin forms’ trend topic is this soft fork which is about a code change for Segregated Witness Adoption.
This list is not exhaustive. There are plenty of public blockchains, and they are actively adopted by such industries as FinTech, gaming, logistics, and beyond. However, it not always makes sense to move certain processes and businesses to the public network as the latter are characterized by comparatively low speed of transactions execution and high costs. Indeed, every transaction requires a consensus of the entire network. Unfortunately, it takes time and resources.
Given all of this, it may seem like private blockchains are unquestionably a better choice for institutions. However, even in an institutional context, public blockchains still have a lot of value, and in fact this value lies to a substantial degree in the philosophical virtues that advocates of public blockchains have been promoting all along, among the chief of which are freedom, neutrality and openness. The advantages of public blockchains generally fall into two major categories:
Federated Blockchains operate under the leadership of a group. As opposed to public Blockchains, they don’t allow any person with access to the Internet to participate in the process of verifying transactions. Federated Blockchains are faster (higher scalability) and provide more transaction privacy. Consortium blockchains are mostly used in the banking sector. The consensus process is controlled by a pre-selected set of nodes; for example, one might imagine a consortium of 15 financial institutions, each of which operates a node and of which 10 must sign every block in order for the block to be valid. The right to read the blockchain may be public, or restricted to the participants.
The block time is the average time it takes for the network to generate one extra block in the blockchain.[27] Some blockchains create a new block as frequently as every five seconds.[28] By the time of block completion, the included data becomes verifiable. In cryptocurrency, this is practically when the transaction takes place, so a shorter block time means faster transactions. The block time for Ethereum is set to between 14 and 15 seconds, while for bitcoin it is 10 minutes.[29]

Since 2008 when Satoshi Nakamoto published a white paper considering Bitcoin and blockchain technology, the latter gained fame as a tool for combating trust issues and bringing transparency to transactions between independent participants. Even though a decade passed, for a lay public, blockchain is still not the easiest concept to deal with. As a rule, people generalize things they don’t understand deeply in detail. Thus, when they hear “blockchain,” they tend to think there’s just one transcendental blockchain that hosts thousands of projects. But it’s a wrong perception as there are numerous blockchains and they differ.
The sidechains vision of the future is of a vast globe-spanning decentralized network of many blockchains, an intertwined cable rather than a single strand, each with its own protocol, rules, and features — but all of them backed by Bitcoin, and protected by the Bitcoin mining network, as the US dollar was once backed by gold. Sidechains can also be used to prototype changes to the fundamental Bitcoin blockchain. One catch, though: this will require a small tweak to the existing Bitcoin protocol.
Elements Alpha functions as a sidechain to Bitcoin’s testnet, though the peg mechanism currently works through a centralized protocol adapter, as described in the Sidechains whitepaper. It relies on an auditable federation of signers to manage the testnet coins transferred into the sidechain via the “Deterministic Pegs” Element, and to produce blocks via the “Signed Blocks” Element. This makes it possible to immediately explore the new chain’s possibilities, using different security trade-offs. They plan to, in a later release, upgrade the protocol adapter to support fully decentralized merge-mining of the sidechain, and ultimately to phase in the full 2-way peg mechanism.

Every node in a decentralized system has a copy of the blockchain. Data quality is maintained by massive database replication[8] and computational trust. No centralized "official" copy exists and no user is "trusted" more than any other.[4] Transactions are broadcast to the network using software. Messages are delivered on a best-effort basis. Mining nodes validate transactions,[22] add them to the block they are building, and then broadcast the completed block to other nodes.[24]:ch. 08 Blockchains use various time-stamping schemes, such as proof-of-work, to serialize changes.[34] Alternative consensus methods include proof-of-stake.[22] Growth of a decentralized blockchain is accompanied by the risk of centralization because the computer resources required to process larger amounts of data become more expensive.[35]


There are many critics of payment channels. Finding the quickest path between unconnected nodes is no trivial exercise. This is a classic “traveling salesman” problem that has been worked on by top computer scientists for decades. Critics argue that it is highly unlikely payment channels like Bitcoin’s Lightning and Ethereum’s Raiden will work as expected in practice due to complexities like the traveling salesman problem. The key for you is just to know that these projects and potential solutions to blockchain scalability issues exist. Many of the smartest minds in the industry are working actively to bring them to life.
Tú, o el usuario en cuestión de las sidechains, envía los bitcoins a una dirección Bitcoin específica, sabiendo que, una vez mandados, estarán fuera de tu control y fuera del control de cualquier otra persona. Estarán completamente inmovilizados y sólo se podrán desbloquear si alguien puede demostrar que no se están utilizando en ningún otro lugar.
Let's explore if there is a hybrid blockchain concept (third type). A consortium blockchain would be a mix of both the public and private. Wherein the ability to read & write could be extended to a certain number of people/nodes. This could be used by groups of organization/firms, who get together, work on developing different models by collaborating with each other. Hence, they could gain a blockchain with restricted access, work on their solutions and maintain the intellectual property rights within the consortium.
Side-chain is another blockchain for one blockchain. To use side-chain of Bitcoin, for instance, you need to move BTC from the original chain to the side-chain. Then, BTC on the original chain is locked and the same amount of BTC on the side-chain appears. This is how BTC can be used/tested on another chain where we use some features different from the original ones.

The Bitcoin White Paper was published by Satoshi Nakamoto in 2008; the first Bitcoin block got mined in 2009. Since the Bitcoin protocol is open source, anyone could take the protocol, fork it (modify the code), and start their own version of P2P money. Many so-called altcoins emerged and tried to be a better, faster or more anonymous than Bitcoin. Soon the code was not only altered to create better cryptocurrencies, but some projects also tried to alter the idea of blockchain beyond the use case of P2P money.
This segment is where we have seen the most rapid metamorphosis in the past year, mostly in financial services. These solutions are industry-specific, and they are based on private blockchain or ledger infrastructures. A caveat here is that some of these are not full blockchains. Rather, they are distributed ledgers, which are a subset of blockchain capabilities. And some don’t even include a consensus element, which takes the implementation another level down from distributed ledger tech.
A diferencia con la, hasta ahora, plataforma estrella de smart contracts Ethereum, otra de las diferencias más importantes de Lisk es que, en Lisk, cada aplicación corre sobre su propia sidechain y no sobre una única cadena, cómo es el caso de Ethereum. Por lo tanto, un entorno propio e independiente que podrá exprimir cada desarrollador para cada DAPP desarrollada con un backend en JS/NodeJS y un frontend HTML/CSS/JS.
As we’ve talked about, writing to the blockchain is slow and expensive. This is because every node in the entire network needs to verify and slurp in the whole blockchain and all the data it contains. Executing a large smart contract on a blockchain can be prohibitively expensive, and doing things like storing images on blockchains is economically infeasible.
Since extension blocks can be implemented via soft forks, the features of the extension blocks are essentially opt-in for users. Even in the case of extension blocks with a larger block size limit, users are not forced to upgrade and validate or propagate blocks that are much larger in size. Those who wish to enjoy the level of decentralization offered by 1MB blocks can continue to do so, while those who would like to experiment with much larger block size limits can do so on an opt-in basis.
State of the art public Blockchain protocols based on Proof of Work (PoW) consensus algorithms are open source and not permissioned. Anyone can participate, without permission. (1) Anyone can download the code and start running a public node on their local device, validating transactions in the network, thus participating in the consensus process – the process for determining what blocks get added to the chain and what the current state is. (2) Anyone in the world can send transactions through the network and expect to see them included in the blockchain if they are valid. (3) Anyone can read transaction on the public block explorer. Transactions are transparent, but anonymous/pseudonumous.

Now, making experimental or rapid changes to Bitcoin is very risky and so change happens slowly. So if the one-size-fits-all architecture of Bitcoin doesn’t suit a particular use-case, you have a problem. You either have to use an entirely different cryptocurrency (or build one!). Or you have to use (or build) a centralized service, which brings new risks.


The Blockstream Satellite network broadcasts the Bitcoin blockchain to the entire planet. The satellite network provides an opportunity for nearly 4 billion people without Internet access to utilize bitcoin while simultaneously ensuring bitcoin use is not interrupted due to network interruption. Utilizing the latest open source Software Defined Radio (SDR) technologies, the Blockstream Satellite network offers a breakthrough in the cost effectiveness of satellite communications.
Intellectsoft is a global full-cycle custom software development company that helps businesses to overcome the technological challenges of digital transformation through innovation and the use of emerging technologies, like blockchain, augmented reality, artificial intelligence, Internet of Things, and cloud computing. Intellectsoft has been operating in the IT industry for over 10 years, delivering solutions to Fortune 500 companies and legen ... Read more
2) Yea, blockchain could be a suboptimal MQ Series, a slower append only persistent wire that has a lot of ready-made tools for audit and security analysis (ecosystem argument). As blockchain ecosystem grows all kinds of data transformation tools will appear (e.g. we are working on such). Inside blockchain could be tuned to be less PoW intensive and to cut blocks faster. Besides, the variations of PoS or a hybrid PoW + PoS scheme are emerging which could use the fact that inside, as you say, all network participants can have clear identities, unlike on the public bitcoin’s blockchain.

So if you want to create a more secure Sidechain, we would seriously need to have a look at incentivizing miners in other ways. These could include things such as the Sidechain raising outside funding from investors in order to pay the miners. Staggering mining award so miners have an incentive to keep mining as they will be paid later on rather than at the time or the Sidechain could issue its own mining award on top of the already existing transaction fees and essentially just become an Altcoin.
When blockchain technology was introduced to the public in 2008 (via Satoshi Nakamoto’s famous white paper), it would have been hard to predict that private or consortium blockchains would become popular. But recently, there’s been a lot of buzz about this in the digital currency community. Many companies are beginning to experiment with blockchain by implementing private and consortium chains, although some people are critical of this. This discussion not only centers on use cases and benefits, but whether non-public blockchains are an appropriate application of the protocol to begin with.
×