@gendal I am discussing private chains with prospects, so my interest is not superficial and theoretical. I see the benefits for the organization in using the private chain as another form of internal database, with better security properties. It can also be used where a service bus product would be today, to facilitate integration, conformance, monitoring, audit. Private chain can also, via a two way peg, be connected to the main chain, achieving a form of public/private network divide that routers created for us in the early stages of the Internet development. Anything else on the benefits side that I missed?
A diferencia con la, hasta ahora, plataforma estrella de smart contracts Ethereum, otra de las diferencias más importantes de Lisk es que, en Lisk, cada aplicación corre sobre su propia sidechain y no sobre una única cadena, cómo es el caso de Ethereum. Por lo tanto, un entorno propio e independiente que podrá exprimir cada desarrollador para cada DAPP desarrollada con un backend en JS/NodeJS y un frontend HTML/CSS/JS.
The term “sidechains” was first described in the paper “Enabling Blockchain Innovations with Pegged Sidechains”, circa 2014 by Adam Back et al. The paper describes “two-way pegged sidechains”, a mechanism where by proving that you had “locked” some coins that were previously in your posession, you were allowed to move some other coins within a sidechain.
The first work on a cryptographically secured chain of blocks was described in 1991 by Stuart Haber and W. Scott Stornetta.[10][6] They wanted to implement a system where documents' timestamps could not be tampered with or backdated. In 1992, Bayer, Haber and Stornetta incorporated Merkle trees to the design, which improved its efficiency by allowing several documents to be collected into one block.[6][11]
These in-channel payments would be instant, unlike current Bitcoin payments, which require an hour to be fully verified on the blockchain. What’s more, payments would be routable across multi-hop paths, like packets across the Internet — so instead of having to create a channel to every new counterparty, you could maintain a few channels to a small number of well-connected secure intermediaries and send/receive money through them.
Always there is a balance in nature, even in blockchains. If you want to have extra features, you need to make a sacrifice from your current features. For example to have high speed and volume; you need to give some from your security & immutability by doing consensus with smaller groups or you need to use different methods in consensus like POS / PBFT. (Proof of Stake / Practical Byzantine Fault Tolerance)
A diferencia con la, hasta ahora, plataforma estrella de smart contracts Ethereum, otra de las diferencias más importantes de Lisk es que, en Lisk, cada aplicación corre sobre su propia sidechain y no sobre una única cadena, cómo es el caso de Ethereum. Por lo tanto, un entorno propio e independiente que podrá exprimir cada desarrollador para cada DAPP desarrollada con un backend en JS/NodeJS y un frontend HTML/CSS/JS.
“RSK directly “plugs in” to achieve a perfect merged-mining and to ensure that cryptographic work, that will be discarded in Bitcoin mining, is reused in the first smart contract open-source platform secured by the Bitcoin network. RSK has an agreement with Bitcoin miners: we share with them 80% of the fees arising from transactions made within the smart contract network.”
Bitcoin and Ethereum blockchains use the ‘proof of work’ (POW) consensus algorithm to provide maximum security. It relies on a process called ‘mining’, which involves nodes trying to find the cryptographic hash of the last recorded block in order to create a new block. This is a massive number-crunching operation. It’s computing-power and energy-intensive, and becomes increasingly costly as the blockchain length grows. Read more about POW in this article “Proof of work vs proof of stake comparison”. This makes such blockchains impractical in a large business context.
Of course, the drawbacks of public and private blockchains are still very much present in the case consortium chains. This all depends on the way each consortium is constructed: a more public consortium chain will bear the burdens of public chains, while a more private one might suffer from the relative lack of openness and disintermediation. The right configuration depends on the needs and vision for each specific chain. Strategy and tailoring are always necessary to get the best solution.
A blockchain is a continuously growing list of records called blocks, these blocks are linked and secured using cryptographic algorithms. Each block typically contains a hash (a link to a previous block), a timestamp as well as transaction data. Full nodes validate all the transactions, but are unable to settle the disagreements in regards to the order in which they were received. To prevent double-spending, the entire network needs to reach global consensus on the transaction order. It achieves this by using centralised parties or a decentralised proof of work or proof of stake algorithm (and its derivatives).
Sidechains offer a way for new, more radical settings and technologies to be implemented without affecting the main chain. This ensures that the main chain is as secure as possible whilst providing the freedom to explore options which would never be considered for use on the main chain. Sidechains should be quite powerful as they provide cases like anonymity, transparency, confirmation times and turing complete options like rootstock all whilst utilizing bitcoins rather than relying on the hashing power (security) of some far less secure alt coin. That being said… there is quite some controvery regarding blockstream’s funding of most of the core development team and their inflexiblity regarding the max blocksize. This inflexibility has directly contributed to the success of ethereum and it remains to be seen whether the dream of bitcoin maximalism will survive long enough for sidechains with all of the promised functionality to be rolled out. I am skeptical.

Since extension blocks can be implemented via soft forks, the features of the extension blocks are essentially opt-in for users. Even in the case of extension blocks with a larger block size limit, users are not forced to upgrade and validate or propagate blocks that are much larger in size. Those who wish to enjoy the level of decentralization offered by 1MB blocks can continue to do so, while those who would like to experiment with much larger block size limits can do so on an opt-in basis.

What Bitcoin’s development team is essentially doing through feature-creep is forcing everyone in the non-tech world to use Bitcoin through commercial proxies to avoid all this complexity (crypto-what? security? sidechain?), which effectively results in the loss of security, relative anonymity and decentralized properties that helped to make it interesting in the first place.
Another promise of sidechains is the ability to have a stronger and faster mainchain, as transactions can happen on one of the sidechains. If users or developers are dissatisfied with the costs of sending a transaction and the transaction speed of the mainchain, they can use and or deploy their dapp on one of the sidechains. This leads to a more diversified network and a stronger, faster and more robust mainchain.
LeewayHertz provides end to end solution to build enterprise-grade blockchain applications.  Experienced in developing multiple blockchain applications for Global Supply Chain, Identity Solution on blockchain and utility bill generation using blockchain.  LeewayHertz has experience working with distributed ledger technology including Hyperledger, Ethereum, R3Corda, and Hashgraph. The team also includes Hedera Hashgraph ambassadors ... Read more
– A consensus much faster: the fact that the consensus mechanism is centralized makes it much quicker. In fact, the term “consensus” is no longer adapted since it is rather a recording of transactions on the blockchain. Note that the entity responsible for managing the blockchain can decide to change the parameters of the blockchain and in particular to increase the size of the blocks to be able to add more transactions.
Our Proof of Work tutorial talks about it in depth, but the best explanation might come from Satoshi Nakamoto himself. If the camps above start receiving messages that don’t agree, they rely on executing a Proof of Work. The Proof of Work is sufficiently complicated and requires significant computing power. Once one camp solves the Proof of Work, it broadcasts the results to the other camps. This message is now accepted in a chain of messages and the competing messages are dropped by the other camps.
As you can see, several of these real-world demands for the evolution of the initial Bitcoin implementation are still highly relevant. Trade-offs between scalability and decentralization are demonstrated with Ethereum’s focus on decentralization first and resulting complexities in developing scalable solutions. The increased emphasis on smart contract functionality, pegging real-world assets to blockchains, and experimentation of altcoins that are currently ongoing also represent the forward-thinking ideas outlined in the paper.
I said above that you can build sophisticated rules into Bitcoin transactions to specify how ownership is proved. However, the Bitcoin scripting language is deliberately limited and many ideas in the Smart Contracts space are difficult or impossible to implement. So projects such as Ethereum are building an entirely new infrastructure to explore these ideas
Performance at scale: It is not uncommon for large businesses to process 100,000’s of transactions per second (TPS). Therefore, enterprise blockchains need to scale so that they can deliver performance accordingly. To achieve this, they can compartmentalize processes using containers or similar approaches. Read more about this requirement in this article “Enterprise blockchain ready to go live”.
This construction is achieved by composing smart contracts on the main blockchain using fraud proofs whereby state transitions can be enforced on a parent blockchain. We compose blockchains into a tree hierarchy, and treat each as an individual branch blockchain with enforced blockchain history and MapReducable computation committed into merkle proofs. By framing one’s ledger entry into a child blockchain which is enforced by the parent chain, one can enable incredible scale with minimized trust (presuming root blockchain availability and correctness).
By definition, blockchain is a ledger of all transactions that have been executed and could be seen as a write-only platform, wherein transactions once executed cannot be modified later. This platform has been further divided into Public and Private blockchain. Is there a third one? a hybrid mode such as a ‘Consortium blockchain’ as represented by Vitalik Buterin, founder of Ethereum, a decentralized web 3.0 publishing platform.
Decentralized web. The sidechain technology holds premises to expand one of the main values of the blockchains – the decentralization of confidence. There is no need for central structure behind the transactions - the holders of cryptocurrencies are free to use their assets the way they want. The sidechains make their deals even more protected and reliable.

Sidechain is a blockchain that runs parallel to the main blockchain. It extends the functionality of interplorable blockchain networks. Interpolable blockchain networks signifies the ability to share data between different computer systems on different machines. It means that data can be sent and received between interconnected networks eliminating the possibility of negative impact to the networks. Sidechain enables this to be done in a decentralised manner to transfer and synchronise tokens between two chains.

A consortium blockchain is part public, part private. This split works at the level of the consensus process: on a consortium chain, a pre-selected group of nodes control the consensus process, but other nodes may be allowed to participate in creating new transactions and/or reviewing it. The specific configuration of each consortium chain (i.e., which nodes have the power to authorize transactions via the consensus process, which can review the history of the chain, which can create new transactions, and more) is the decision of each individual consortium.

Bitdeal is a bitcoin cryptocurrency exchange software & Blockchain development company. The main focus of the firm is to reduce the risks in bitcoin trading and to encourage new bitcoin exchange startups by providing a well-developed bitcoin exchange script or a cryptocurrency exchange software.  Being a cryptocurrency exchange software solution, bitdeal has covered around 50+ countries around the world, and have collected more than 200+ ... Read more
Public chains to the rescue! Public chains offer public transaction data that can be verified in real-time by anybody that cares to run a node. The more independent users or institutions that take part in verification, the more secure and decentralised the chain becomes! At Iryo, we strive to have every clinic doing full validation of the global state for the relevant smart contracts (EOS based). Public blockchains are mainly useful for two things; value routing (including initial creation and distribution) and trustless timestamping of messages.
Sidechains are blockchains that allow for digital assets from one blockchain to be used securely in a separate blockchain and subsequently returned to the original chain. The term “sidechain” in this case is used for context, in that the paper initially refers to Bitcoin as the “parent chain” and connected blockchains (altcoins) as “sidechains,” but the term is interchangeable so that altcoins interacting with each other can each be a parent chain interacting with sidechains. You may have also heard of “childchains,” which are also sidechains.

Public blockchains are also expensive, and not just in terms of money. The time and energy required to process transactions on public chains is more intensive than that of non-public chains. This is because every single node on the chain must authorize each new transaction before it is added to the chain, which requires a large amount of electricity and time (not to mention money).
You cannot be a crypto investor or entrepreneur without having a real understanding of the differences between these types of blockchains as well as their implications. Even if they are based on similar principles, their operation is, in fact, different to all levels. So the tokens issued by these blockchains will not be assessed in the same manner.
The “three-part” transaction structure is very general but it only allows you to transfer ownership of Bitcoins. Some people would like to transmit richer forms of information across these sorts of systems. For example, a decentralized exchange needs a way for participants to place orders. Projects such as Mastercoin, Counterparty, NXT and others either build layers on top of Bitcoin or use entirely different codebases to achieve their goals.
That might sound like a problem, but it isn’t because the box can only be opened infrequently (two or three times a year), and a super-majority of miners must leave a note on the box in advance. This note states exactly where the miners intend to transfer the money. The “correct” note is automatically generated by sidechain software, and is easy to check.
Security issues. Like the blockchain, the sidechain needs the work of miners to stay safe from attacks. Without sufficient power, the sidechain is vulnerable for assault. If hacked, only the sidechain will be damaged, while the main chain remains untouched and ready to continue work. If the main chain comes under the attack, the sidechain still operates, but without the value of the peg.
Nodes can be trusted to be very well-connected, and faults can quickly be fixed by manual intervention, allowing the use of consensus algorithms which offer finality after much shorter block times. Improvements in public blockchain technology, such as Ethereum 1.0's uncle concept and later proof of stake, can bring public blockchains much closer to the "instant confirmation" ideal (eg. offering total finality after 15 seconds, rather than 99.9999% finality after two hours as does Bitcoin), but even still private blockchains will always be faster and the latency difference will never disappear as unfortunately the speed of light does not increase by 2x every two years by Moore's law.
“Amit Goel is the Founder & Chief Strategy & Innovation Officer for MEDICI. Amit’s vision is to build a strong FinTech market network that involves financial institutions, banks, startups, investors, analysts & other key stakeholders across the ecosystem – helping each one of them in a meaningful way by removing the asymmetry of information and providing a platform to engage & transact.\ \ Amit is passionate about bringing actionable FinTech-focused insights, innovative products & services for the FinTech ecosystem. Some of his work involves startup scores, bank scores/assessments, predictive viewpoints & other innovations that have helped MEDICI’s customers and the ecosystem. He has been named amongst the Top 100 FinTech thought leaders/influencers in the world & Top 10 in Asia multiple times by reputed agencies, consulting firms as well as financial institutions. Amit has built MEDICI (formerly LTP) as a new-age, tech-enabled advisory/research firm, which is now considered the #1 global research & innovation platform for FinTech in the world.\ \ Amit has been writing pioneering viewpoints on financial technology space that have been ahead of the curve since 2010. His data-driven predictions have helped the customers as well as the ecosystem. His past work experience includes a strong background in strategy & market analysis and advisory to clients (from big business houses to Fortune 500 firms) in payments, commerce, financial services & IT/technology. In the past, Amit had also founded a successful consulting & research practice called GrowthPraxis and has worked at Boston Analytics, Frost & Sullivan, and Daimler Chrysler in strategy & research.”
As you know, we at LTP have been doing a lot of research to understand other use cases of blockchain apart from Bitcoin-based payments. Recently we had released a comprehensive analysis of 50+ startups and 20 use-cases of blockchain. Though there have been news of large companies accepting bitcoin (Ex.: Amazon, Microsoft, Dell) and the overall acceptance reaching a 100,000+ merchants figure, upon deeper examination we realize that large corporations do not store the Bitcoin payments. They generally partner with a Bitcoin payment processor who converts the Bitcoins to cash as and when they receive a payment and this converted amount is what the corporates take into their account. What a bummer!
Bitcoin’s block interval is ten minutes so it takes about five ten minutes on average for a new transaction to find its way into a block, even if it pays a high fee. This is too slow for some people so they have experimented with alternative cryptocurrencies, based on the Bitcoin code-base, which employ quicker block intervals   [UPDATED 2014-10-27 to correct my embarrassing misunderstanding of mathematics…]
Decentralized web. The sidechain technology holds premises to expand one of the main values of the blockchains – the decentralization of confidence. There is no need for central structure behind the transactions - the holders of cryptocurrencies are free to use their assets the way they want. The sidechains make their deals even more protected and reliable.
A federation is a group that serves as an intermediate point between a main chain and one of its sidechains. This group determines when the coins a user has used are locked up and released. The creators of the sidechain can choose the members of the federation. A problem with the federation structure is that it adds another layer between the main chain and the sidechain.

Sidechain is a chain of blocks based on the main parental blockchain. Sidechains realize the new financial ecosystems via integration into Bitcoin. Relatively new to Bitcoin, the sidechain is an extension that enables the ability both to build a link between BTC and an altcoin and to create new independent services that work via the main Bitcoin blockchain. Using sidechains allows for the creation of various types of smart contracts, stocks, derivatives, etc. It is possible to develop a limitless number of Bitcoin or Ethereum-based sidechains with different tasks and features, assets of which will depend on the main blockchain’s volatility. It allows traditional blockchains to support several kinds of assets, payments, smart contracts and also to increase the level of security and anonymity of transactions.
Sidechains are an essential innovation in the blockchain field with some interesting long-term implications and effects on the broader interoperability and scalability of blockchain networks. They are effectively extensions of existing blockchains that increase their functionality and allow for validation of data from other blockchains and for assets to be seamlessly transferred between them.

Contrary to popular belief, aided by deceptive blockchain marketing, blockchains are not a good solution for storing data. Each piece of information that you store in the blockchain sits in hundreds or more nodes (more than 100,000 in the case of Bitcoin) making it an extremely costly solution. This is why the Iryo Network doesn’t store data on blockchain but instead, uses blockchain to ensure the transparency of transactions. As a disclaimer, competitors also don’t save medical data on the chain itself (even those who use private chains). Instead, only the fingerprint aspect of a medical record file or a hash is stored on the blockchain.
×