Open blockchains are more user-friendly than some traditional ownership records, which, while open to the public, still require physical access to view. Because all early blockchains were permissionless, controversy has arisen over the blockchain definition. An issue in this ongoing debate is whether a private system with verifiers tasked and authorized (permissioned) by a central authority should be considered a blockchain.[36][37][38][39][40] Proponents of permissioned or private chains argue that the term "blockchain" may be applied to any data structure that batches data into time-stamped blocks. These blockchains serve as a distributed version of multiversion concurrency control (MVCC) in databases.[41] Just as MVCC prevents two transactions from concurrently modifying a single object in a database, blockchains prevent two transactions from spending the same single output in a blockchain.[42]:30–31 Opponents say that permissioned systems resemble traditional corporate databases, not supporting decentralized data verification, and that such systems are not hardened against operator tampering and revision.[36][38] Nikolai Hampton of Computerworld said that "many in-house blockchain solutions will be nothing more than cumbersome databases," and "without a clear security model, proprietary blockchains should be eyed with suspicion."[9][43]
Security issues. Like the blockchain, the sidechain needs the work of miners to stay safe from attacks. Without sufficient power, the sidechain is vulnerable for assault. If hacked, only the sidechain will be damaged, while the main chain remains untouched and ready to continue work. If the main chain comes under the attack, the sidechain still operates, but without the value of the peg.
Let me explain. The Lightning Network allows for the creation of “micropayment channels” across which multiple Bitcoin transactions can be securely performed without interacting with the blockchain, except for the initial transaction that initiates the channel. There is no counterparty risk: if any party ceases to cooperate, and/or does not respond within an agreed-on time limit, the channel can be closed and all its outstanding transactions kicked up to the blockchain to be settled there.
As an engineer and an entrepreneur, I truly believe blockchain technology is going to revolutionize the world. One of the biggest hurdles we need to tackle in the blockchain industry is scalability. Ethereum can only handle 15 transactions per second. I previously wrote about why that will prevent blockchain from going mainstream and how DAG could potentially be a winner.
Ardor is a blockchain platform predicated on childchains (sidechains) that use proof of stake (PoS) consensus. It uses the primary chain as a security chain and the childchains for processing transactions to increase scalability. Their design is specifically focused on speed and efficiency through PoS consensus and removing blockchain bloat through pruning.
@tradles – thanks for taking the time to explain this. OK – so I get the debate around blockchain bloat and the (grudging) inclusion of OP_RETURN, etc., but what I’m missing is that I can only really see one scenario where embedding any identity data into the blockchain makes sense…. and that’s when I want to *associate* an identity with a transaction I’m performing.
It’s the IBM “blockchain”. Basically Apache Kafka queue service, where they have modified the partitions. Each partition is an ordered, immutable sequence of messages which are continuously appended. They added some “nodes” to clean the inputs and voila; blockchain! We should add that there are no blocks, but batches of transactions are renamed to fit the hype better. Since everything gets written in one queue at the end of the day, IBM offers the bluemix cloud server (priced at 120.000$ per year) to host the service. Smaller test packages with a couple of input cleaning nodes go reportedly for 30.000$.
Many people believe this is the future of the blockchain. It maintains network security and allows for scalability. The biggest criticism is that it heavily favors those with more funds as smaller holders have no chance of becoming witnesses. But the reality is, smaller players have no hope of participating in Proof of Work either, as mining from your own laptop at home is no longer a reality. Smaller players get outcompeted by bigger players who have massive mining rigs. STEEM and EOS are examples of DPOS blockchains. Even Ethereum is moving to POS with its Casper project.
What if we could run heavy computations in a more centralized fashion, say on a single server, and then periodically integrate the results onto the main blockchain for posterity. We temporarily expose some vulnerability while the parallel server runs the heavy computation, but we get a massive benefit in that we don’t have to run the computation on chain, and simply need to store the results for future verification. This is the general premise behind Truebit. We won’t get into all the details of Truebit but there is a concept of challengers, who check to see the computations that were made have high fidelity.
thank you for the clear explanation of this. so in essence, by locking bitcoins to a particular address we’ve created an asset (collateral). then on the other sidechain (marketplace) we get issued shares against the asset, which we can sell. anyone holding a share can then redeem it against the asset. I think that’s an analogy that finance types would get
A federation is a group that serves as an intermediate point between a main chain and one of its sidechains. This group determines when the coins a user has used are locked up and released. The creators of the sidechain can choose the members of the federation. A problem with the federation structure is that it adds another layer between the main chain and the sidechain.
Instead of adding new features directly to the bitcoin blockchain, sidechains allow developers to attach new features to a separate chain. Since the chains are still attached to the bitcoin blockchain, the features can take advantage of the cryptocurrency's network effects and test those applications, without harming the main network should vulnerabilities arise.

Many people believe this is the future of the blockchain. It maintains network security and allows for scalability. The biggest criticism is that it heavily favors those with more funds as smaller holders have no chance of becoming witnesses. But the reality is, smaller players have no hope of participating in Proof of Work either, as mining from your own laptop at home is no longer a reality. Smaller players get outcompeted by bigger players who have massive mining rigs. STEEM and EOS are examples of DPOS blockchains. Even Ethereum is moving to POS with its Casper project.

Sidechains are an essential innovation in the blockchain field with some interesting long-term implications and effects on the broader interoperability and scalability of blockchain networks. They are effectively extensions of existing blockchains that increase their functionality and allow for validation of data from other blockchains and for assets to be seamlessly transferred between them.

Governance: Every enterprise needs to design standards, processes, methods, and tools to develop and operate a private blockchain. To achieve this they will need tools and frameworks such as IDE, testing framework, security auditing tool etc. For long-term successful operation, they also need to develop high-quality documentation. This requires proactive governance. Read more about the importance of the “Fundamental challenges with public blockchains” here.
Bitcoin está demostrando un potencial enorme, y desarrolladores de todo el mundo quieren llevar esta tecnología aún más lejos, por ejemplo con los smart contracts turing completo o las llamadas smart property. El problema es que Bitcoin tiene un lenguaje de programación deliberadamente limitado. Además sus transacciones se confirman relativamente despacio, cada 10 minutos. Y ya por último y muy importante, su cadena de bloques está saturándose de transacciones debido a la creciente fama de Bitcoin.
Federated Blockchains operate under the leadership of a group. As opposed to public Blockchains, they don’t allow any person with access to the Internet to participate in the process of verifying transactions. Federated Blockchains are faster (higher scalability) and provide more transaction privacy. Consortium blockchains are mostly used in the banking sector. The consensus process is controlled by a pre-selected set of nodes; for example, one might imagine a consortium of 15 financial institutions, each of which operates a node and of which 10 must sign every block in order for the block to be valid. The right to read the blockchain may be public, or restricted to the participants.
RSK is the first open-source smart contract platform with a 2-way peg to Bitcoin that also rewards the Bitcoin miners via merge-mining, allowing them to actively participate in the Smart Contract revolution. RSK goal is to add value and functionality to the Bitcoin ecosystem by enabling smart-contracts, near instant payments and higher-scalability.

The second option will be to use sidechains. Blockstream first announced side chain in 2014 and published its whitepaper (https://blockstream.com/sidechai...). I believe in the future, bitcoin will have its desired flexibility with its sidechains. The idea of the sidechain is you can innovate and design your solution freely in the sidechains. These sidechains are independent, if they are failed or hacked, they won't damage other chains. So damage will be limited within that chain, for that reason you can be less conservative. Otherwise you would be more risk averse, if you had 42.5 billion dollar market cap like Bitcoin.

Sidechains offer a way for new, more radical settings and technologies to be implemented without affecting the main chain. This ensures that the main chain is as secure as possible whilst providing the freedom to explore options which would never be considered for use on the main chain. Sidechains should be quite powerful as they provide cases like anonymity, transparency, confirmation times and turing complete options like rootstock all whilst utilizing bitcoins rather than relying on the hashing power (security) of some far less secure alt coin. That being said… there is quite some controvery regarding blockstream’s funding of most of the core development team and their inflexiblity regarding the max blocksize. This inflexibility has directly contributed to the success of ethereum and it remains to be seen whether the dream of bitcoin maximalism will survive long enough for sidechains with all of the promised functionality to be rolled out. I am skeptical.
Sidechains solve a lot of problems, but at what cost? The introduction of sidechains makes things even more complex and much harder to understand for those who are not actively involved in the blockchain space. This also divides assets, no more “one chain, one asset” adage, which further complicates things. And on a network level there are multiple independent unsynchronised blockchains interacting with each other.
Quest Global Technologies is a leading software development organization that works on Blockchain, customized ERP, Mobile Apps, Salesforce and Web Development. Quest Global Technologies has been rated as TOP mobile application developers by Appfutura and is covered by Entrepreneur Magazine. Quest Global Technologies has the vision to make its clients successful by leveraging technology to increase sales, automation and reduce wastage. www.cryp ... Read more

Sidechains are responsible for their own security. If there isn’t enough mining power to secure a sidechain, it could be hacked. Since each sidechain is independent, if it is hacked or compromised, the damage will be contained within that chain and won’t affect the main chain. Conversely, should the main chain become compromised, the sidechain can still operate, but the peg will lose most of its value.
There is a whole other issue of identity theft that needs to be addressed. Just a short note here as this is a big subject: If the private key to identity object is stolen, the true owner of the identity needs to have a way to change the key. One approach to that would be to use the private key of the bitcoin transaction that created the first version of the identity object. Another way could be to prove the ownership of other public keys on the identity object, like the one used for encryption (PGP key management suggests a separate key for each purpose, signing, encryption, etc.). Other non-automatic ways could include a trusted third-party, social proof, etc.
Sometimes separate blocks can be produced concurrently, creating a temporary fork. In addition to a secure hash-based history, any blockchain has a specified algorithm for scoring different versions of the history so that one with a higher value can be selected over others. Blocks not selected for inclusion in the chain are called orphan blocks.[22] Peers supporting the database have different versions of the history from time to time. They keep only the highest-scoring version of the database known to them. Whenever a peer receives a higher-scoring version (usually the old version with a single new block added) they extend or overwrite their own database and retransmit the improvement to their peers. There is never an absolute guarantee that any particular entry will remain in the best version of the history forever. Because blockchains are typically built to add the score of new blocks onto old blocks and because there are incentives to work only on extending with new blocks rather than overwriting old blocks, the probability of an entry becoming superseded goes down exponentially[23] as more blocks are built on top of it, eventually becoming very low.[1][24]:ch. 08[25] For example, in a blockchain using the proof-of-work system, the chain with the most cumulative proof-of-work is always considered the valid one by the network. There are a number of methods that can be used to demonstrate a sufficient level of computation. Within a blockchain the computation is carried out redundantly rather than in the traditional segregated and parallel manner.[26]

Consagous Technologies is a prominent name in the blockchain industry for developing secured and robust blockchain solutions for its clients. A highly experienced and technology-driven team at Consagous is well-versed in working on all Blockchain platforms like Hyperledger, Big chain DB, Ethereum and IPFS. Consagous rich experience over wide range of industries coupled with strong technical knowledge of the programmers helps it deliver reliable b ... Read more
Private institutions like banks realized that they could use the core idea of blockchain as a distributed ledger technology (DLT), and create a permissioned blockchain (private or federated), where the validator is a member of a consortium or separate legal entities of the same organization. The term blockchain in the context of permissioned private ledger is highly controversial and disputed. This is why the term distributed ledger technologies emerged as a more general term.
The good thing about sidechains is that they are independent of their main chain. Sidechains take care of their own security. Problems occurring on the sidechain can, therefore, be controlled without affecting the main chain. Likewise, a security problem on the main chain does not affect the sidechain although the value of the peg is greatly reduced.

– The transactions added to the blockchain are public: the whole world (Member of the network as non-members) can access transactions that are added to the blockchain. The information of the transactions is made public for the miners who do not know the other members, to check the conformity (for example that the person who has created a transaction holds enough bitcoins). These transactions are obviously not nominative, only your public key appears, but if someone knows your public key, he will be able to find all the transactions that you have created.


“A private blockchain is hardly different from a traditional database. The term is synonymous with glorified databases. But the advantage is that if they are to ever start adding public nodes to it then it becomes so much more. An open blockchain is the best method for having a trustless ledger. The broader the range of decentralized adoption the better. The Bitcoin blockchain hits all those points. 
×