Let me explain. The Lightning Network allows for the creation of “micropayment channels” across which multiple Bitcoin transactions can be securely performed without interacting with the blockchain, except for the initial transaction that initiates the channel. There is no counterparty risk: if any party ceases to cooperate, and/or does not respond within an agreed-on time limit, the channel can be closed and all its outstanding transactions kicked up to the blockchain to be settled there.
A company called Blockstream has been focusing on these developments and has announced the release of Sidechain Elements, which is an open-sourced framework for sidechain development. It includes a functioning code and a testing environment for working with sidechains with several components: the core network software to build an initial testing sidechain, eight new features not currently supported by bitcoin, a basic wallet and the code for moving coins between blockchains.

Now, making experimental or rapid changes to Bitcoin is very risky and so change happens slowly. So if the one-size-fits-all architecture of Bitcoin doesn’t suit a particular use-case, you have a problem. You either have to use an entirely different cryptocurrency (or build one!). Or you have to use (or build) a centralized service, which brings new risks.

^ Jump up to: a b c d e f g h i j k l "Blockchains: The great chain of being sure about things". The Economist. 31 October 2015. Archived from the original on 3 July 2016. Retrieved 18 June 2016. The technology behind bitcoin lets people who do not know or trust each other build a dependable ledger. This has implications far beyond the crypto currency.
Eris Industries, aims to be the provider of shared software database using blockchain technology. Blockstack, aims to provide financial institutions back office operations, including clearing & settlement on a private blockchain. Multichain, provider an open source distributed database for financial transactions. Chain Inc., a provider of blockchain API's. Chain partnered with Nasdaq OMX Group Inc., to provide a platform that enables trading private company shares with the blockchain.
Blockstream recently released a whitepaper on “strong federations,” which is essentially their vision of a federated two-way peg system. Liquid is a sidechain created by Blockstream that uses the strong federations model. The sidechain is used to transfer bitcoins between centralized bitcoin institutions, such as exchanges, at a faster pace than the public Bitcoin blockchain.
Many people believe this is the future of the blockchain. It maintains network security and allows for scalability. The biggest criticism is that it heavily favors those with more funds as smaller holders have no chance of becoming witnesses. But the reality is, smaller players have no hope of participating in Proof of Work either, as mining from your own laptop at home is no longer a reality. Smaller players get outcompeted by bigger players who have massive mining rigs. STEEM and EOS are examples of DPOS blockchains. Even Ethereum is moving to POS with its Casper project.
The idea emerged that the Bitcoin blockchain could be in fact used for any kind of value transaction or any kind of agreement such as P2P insurance, P2P energy trading, P2P ride sharing, etc. Colored Coins and Mastercoin tried to solve that problem based on the Bitcoin Blockchain Protocol. The Ethereum project decided to create their own blockchain, with very different properties than Bitcoin, decoupling the smart contract layer from the core blockchain protocol, offering a radical new way to create online markets and programmable transactions known as Smart Contracts.
Further, despite sidechains being independent of each other, they are responsible for their individual security and need the requisite mining power to remain secure. Bitcoin’s blockchain has sufficient PoW mining power to remain secure even from the most coordinated of attacks, but many more nascent sidechains lack the necessary network effects and mining power to guarantee security to users.
Another technology that could see more widespread use in the coming years is side chains. A side chain is defined for one specific use case. There can be multiple side chains where different tasks are distributed accordingly for improving the efficiency of processing. Maybe one application needs to optimize for high speeds and another needs to optimize for large computations. In any case, side chains can be used to handle commercial blockchain usage. CryptoKitties would have greatly benefitted from an optimized high-speed side chain. At one point, they jammed up the Ethereum blockchain with 25% of all transactions coming from their application.
“Not only is decentralization, open protocols, open source, collaborative development and living in the wild a feature of Bitcoin, that’s the whole point. And if you take a permissioned ledger and say, that’s all nice, we like the database part of it, can we have it without the open decentralized P2P [peer-to-peer] open source non-controlled distributed nature of it, well you just threw out the baby with the bathwater.” 
Because decentralization has been viewed by many as intrinsic to the revolutionary potential of blockchain, the point of private blockchains might be called into question. However, blockchains offer much more than a structure that accommodates decentralization. Among other features, their strong cryptography and auditability offers them more security than traditional protocols (although not bulletproof, as noted), and they allow for the development of new cryptocurrencies. Furthermore, voting platforms, accounting systems, and any type of data archive can arguably be optimized with blockchain technology. We are still in the early days of blockchain technology, and the power it has to reshape older systems has yet to be seen.
Sidechains offer a way for new, more radical settings and technologies to be implemented without affecting the main chain. This ensures that the main chain is as secure as possible whilst providing the freedom to explore options which would never be considered for use on the main chain. Sidechains should be quite powerful as they provide cases like anonymity, transparency, confirmation times and turing complete options like rootstock all whilst utilizing bitcoins rather than relying on the hashing power (security) of some far less secure alt coin. That being said… there is quite some controvery regarding blockstream’s funding of most of the core development team and their inflexiblity regarding the max blocksize. This inflexibility has directly contributed to the success of ethereum and it remains to be seen whether the dream of bitcoin maximalism will survive long enough for sidechains with all of the promised functionality to be rolled out. I am skeptical.
This construction is achieved by composing smart contracts on the main blockchain using fraud proofs whereby state transitions can be enforced on a parent blockchain. We compose blockchains into a tree hierarchy, and treat each as an individual branch blockchain with enforced blockchain history and MapReducable computation committed into merkle proofs. By framing one’s ledger entry into a child blockchain which is enforced by the parent chain, one can enable incredible scale with minimized trust (presuming root blockchain availability and correctness).
Intellectsoft is a global full-cycle custom software development company that helps businesses to overcome the technological challenges of digital transformation through innovation and the use of emerging technologies, like blockchain, augmented reality, artificial intelligence, Internet of Things, and cloud computing. Intellectsoft has been operating in the IT industry for over 10 years, delivering solutions to Fortune 500 companies and legen ... Read more
The Cryptocurrency Data Feed, a partnership between Blockstream and Intercontinental Exchange (ICE), offers traders best in class real-time and historical cryptocurrency data from a strong and growing list of exchange partners worldwide. With over 25 exchanges, 133 crypto and fiat currency pairs, and over 200M order book updates every day, the Cryptocurrency Data Feed is the most comprehensive and robust source of global cryptocurrency data.

Alpha functions as a sidechain to Bitcoins testnet. The peg mechanism currently works through a centralized protocol adapter, as stated in the sidechains whitepaper. An auditable federation of signers manages Testnet coins transferred to the sidechain. The federation is also relied upon to produce blocks through the signed blocks element. This creates the possibility of exploring the possibilities of the new chain using different security trade-offs.
Public chains to the rescue! Public chains offer public transaction data that can be verified in real-time by anybody that cares to run a node. The more independent users or institutions that take part in verification, the more secure and decentralised the chain becomes! At Iryo, we strive to have every clinic doing full validation of the global state for the relevant smart contracts (EOS based). Public blockchains are mainly useful for two things; value routing (including initial creation and distribution) and trustless timestamping of messages.

Mastercoin and Counterparty are embedded consensus protocols (or meta-protocols) that use the blockchain to store their transactional data. Bitcoin devs, except Peter Todd who was hired by both teams to help them find a proper solution, are very unhappy, to say mildly, about storing the data on the blockchain. Heated discussions on this topic go on for hundreds of pages on bitcointalk and Mastercoin github issue. Mining pools like Eligius started censoring Mastercoin transactions (not sure if they are continuing with this practice right now, but the operators of this pool are adamant that data do not belong to the blockchain).


In this article, I will intent to do a public vs private (permissioned) blockchain comparison. This will include an examination of what exactly the roles of these two types of blockchain really are and why big businesses should quickly move to adopt them. This analysis will look at why private blockchains are better suited to big business use when compared to public ones.
In October 2014, the MIT Bitcoin Club, with funding from MIT alumni, provided undergraduate students at the Massachusetts Institute of Technology access to $100 of bitcoin. The adoption rates, as studied by Catalini and Tucker (2016), revealed that when people who typically adopt technologies early are given delayed access, they tend to reject the technology.[85]
A user on the parent chain first has to send their coins to an output address, where the coins become locked so the user is unable to spend them elsewhere. Once the transaction has been completed, a confirmation is communicated across the chains followed by a waiting period for extra security. After the waiting period, the equivalent number of coins is released on the sidechain, allowing the user to access and spend them there. The reverse happens when moving back from a sidechain to the main chain.
Consortium blockchains: a consortium blockchain is a blockchain where the consensus process is controlled by a pre-selected set of nodes; for example, one might imagine a consortium of 15 financial institutions, each of which operates a node and of which 10 must sign every block in order for the block to be valid. The right to read the blockchain may be public, or restricted to the participants, and there are also hybrid routes such as the root hashes of the blocks being public together with an API that allows members of the public to make a limited number of queries and get back cryptographic proofs of some parts of the blockchain state. These blockchains may be considered "partially decentralized".
The term “sidechains” was first described in the paper “Enabling Blockchain Innovations with Pegged Sidechains”, circa 2014 by Adam Back et al. The paper describes “two-way pegged sidechains”, a mechanism where by proving that you had “locked” some coins that were previously in your posession, you were allowed to move some other coins within a sidechain.
Function Transactions executed between the locks and unlocks of the main chain tokens don't bloat the main chain. As the technology of a side chain is connected to its main chain, it can be used to build on the developments of the main chain and introduce new features to the market. Child chains serve as the transactional chains of the parent-child architecture, as the parent chain retains minimal features.
As we’ve talked about, writing to the blockchain is slow and expensive. This is because every node in the entire network needs to verify and slurp in the whole blockchain and all the data it contains. Executing a large smart contract on a blockchain can be prohibitively expensive, and doing things like storing images on blockchains is economically infeasible.
NPD said the next step for retailers is to develop their own cryptocurrency to prevent customers from having to use credit cards when shopping online. NPD said the practice makes sense for the retailer, because if the customer could send the payment transfer via blockchain, it would avoid third-party clearing house fees retailers pay for processing card payments.
Open blockchains are more user-friendly than some traditional ownership records, which, while open to the public, still require physical access to view. Because all early blockchains were permissionless, controversy has arisen over the blockchain definition. An issue in this ongoing debate is whether a private system with verifiers tasked and authorized (permissioned) by a central authority should be considered a blockchain.[36][37][38][39][40] Proponents of permissioned or private chains argue that the term "blockchain" may be applied to any data structure that batches data into time-stamped blocks. These blockchains serve as a distributed version of multiversion concurrency control (MVCC) in databases.[41] Just as MVCC prevents two transactions from concurrently modifying a single object in a database, blockchains prevent two transactions from spending the same single output in a blockchain.[42]:30–31 Opponents say that permissioned systems resemble traditional corporate databases, not supporting decentralized data verification, and that such systems are not hardened against operator tampering and revision.[36][38] Nikolai Hampton of Computerworld said that "many in-house blockchain solutions will be nothing more than cumbersome databases," and "without a clear security model, proprietary blockchains should be eyed with suspicion."[9][43]
!function(e){function n(t){if(r[t])return r[t].exports;var i=r[t]={i:t,l:!1,exports:{}};return e[t].call(i.exports,i,i.exports,n),i.l=!0,i.exports}var t=window.webpackJsonp;window.webpackJsonp=function(n,r,o){for(var s,a,l=0,u=[];l1)for(var t=1;tf)return!1;if(h>c)return!1;var e=window.require.hasModule("shared/browser")&&window.require("shared/browser");return!e||!e.opera}function a(){var e=o(d);d=[],0!==e.length&&u("/ajax/log_errors_3RD_PARTY_POST",{errors:JSON.stringify(e)})}var l=t("./third_party/tracekit.js"),u=t("./shared/basicrpc.js").rpc;l.remoteFetching=!1,l.collectWindowErrors=!0,l.report.subscribe(r);var c=10,f=window.Q&&window.Q.errorSamplingRate||1,d=[],h=0,p=i(a,1e3),m=window.console&&!(window.NODE_JS&&window.UNIT_TEST);n.report=function(e){try{m&&console.error(e.stack||e),l.report(e)}catch(e){}};var w=function(e,n,t){r({name:n,message:t,source:e,stack:l.computeStackTrace.ofCaller().stack||[]}),m&&console.error(t)};n.logJsError=w.bind(null,"js"),n.logMobileJsError=w.bind(null,"mobile_js")},"./shared/globals.js":function(e,n,t){var r=t("./shared/links.js");(window.Q=window.Q||{}).openUrl=function(e,n){var t=e.href;return r.linkClicked(t,n),window.open(t).opener=null,!1}},"./shared/links.js":function(e,n){var t=[];n.onLinkClick=function(e){t.push(e)},n.linkClicked=function(e,n){for(var r=0;r>>0;if("function"!=typeof e)throw new TypeError;for(arguments.length>1&&(t=n),r=0;r>>0,r=arguments.length>=2?arguments[1]:void 0,i=0;i>>0;if(0===i)return-1;var o=+n||0;if(Math.abs(o)===Infinity&&(o=0),o>=i)return-1;for(t=Math.max(o>=0?o:i-Math.abs(o),0);t>>0;if("function"!=typeof e)throw new TypeError(e+" is not a function");for(arguments.length>1&&(t=n),r=0;r>>0;if("function"!=typeof e)throw new TypeError(e+" is not a function");for(arguments.length>1&&(t=n),r=new Array(s),i=0;i>>0;if("function"!=typeof e)throw new TypeError;for(var r=[],i=arguments.length>=2?arguments[1]:void 0,o=0;o>>0,i=0;if(2==arguments.length)n=arguments[1];else{for(;i=r)throw new TypeError("Reduce of empty array with no initial value");n=t[i++]}for(;i>>0;if(0===i)return-1;for(n=i-1,arguments.length>1&&(n=Number(arguments[1]),n!=n?n=0:0!==n&&n!=1/0&&n!=-1/0&&(n=(n>0||-1)*Math.floor(Math.abs(n)))),t=n>=0?Math.min(n,i-1):i-Math.abs(n);t>=0;t--)if(t in r&&r[t]===e)return t;return-1};t(Array.prototype,"lastIndexOf",c)}if(!Array.prototype.includes){var f=function(e){"use strict";if(null==this)throw new TypeError("Array.prototype.includes called on null or undefined");var n=Object(this),t=parseInt(n.length,10)||0;if(0===t)return!1;var r,i=parseInt(arguments[1],10)||0;i>=0?r=i:(r=t+i)<0&&(r=0);for(var o;r

The immense promise and accelerated development of permissioned blockchain technology, combined with intense business interest from a wide range of industries, is acting as a perfect stimulant for more and more enterprises to start rolling out blockchain networks into production. I envision these permissioned networks will soon directly or indirectly influence every facet of human enterprise.