If you’ve been keeping track of developments in the bitcoin industry, you’d know that the blockchain refers to the public ledger of transactions associated with the cryptocurrency. As the bitcoin ecosystem has grown in size and scale throughout the years, the blockchain has also increased considerably in length and storage size, prompting debates on whether or not to increase its block size limit.
Note: Some would argue that such a system cannot be defined as a blockchain. Also, Blockchain is still in it’s early stages. It is unclear how the technology will pan out and will be adopted. Many argue that private or federated Blockchains might suffer the fate of Intranets in the 1990’s, when private companies built their own private LANs or WANs instead of using the public Internet and all the services, but has more or less become obsolete especially with the advent of SAAS in the Web2.

Public blockchains: a public blockchain is a blockchain that anyone in the world can read, anyone in the world can send transactions to and expect to see them included if they are valid, and anyone in the world can participate in the consensus process - the process for determining what blocks get added to the chain and what the current state is. As a substitute for centralized or quasi-centralized trust, public blockchains are secured by cryptoeconomics - the combination of economic incentives and cryptographic verification using mechanisms such as proof of work or proof of stake, following a general principle that the degree to which someone can have an influence in the consensus process is proportional to the quantity of economic resources that they can bring to bear. These blockchains are generally considered to be "fully decentralized".

Many blockchain enthusiasts believe in the value of networks that are not only decentralized — which most closely resembles the current model of the Internet — but distributed. This includes Tim Berners-Lee, who founded the World Wide Web in 1989. Berners-Lee has proposed that blockchains can be used to reinvent the web in a more distributed and peer-to-peer fashion.
Public blockchains are also expensive, and not just in terms of money. The time and energy required to process transactions on public chains is more intensive than that of non-public chains. This is because every single node on the chain must authorize each new transaction before it is added to the chain, which requires a large amount of electricity and time (not to mention money).
Recordemos, como hemos mencionado anteriormente, que actualmente son cientos los proyectos y monedas alternativas que trabajan con su propia cadena de bloques, totalmente desconectadas de la de Bitcoin. Todas con su cotización volatil. El problema de estas monedas es que ninguna de ellas dispone del efecto red ni de la seguridad que sí tiene Bitcoin. De hecho muchas, pese a haber implementado propuestas interesantes, se quedan en nada, con miles de horas y esfuerzo “tirado a la basura”. Incluso algunas de ellas han replicado el codigo de Bitcoin, pero también los fallos que en ese momento pudiera tener y mientras que en Bitcoin si se han solucionado, en esa Altcoin no.
The Cryptocurrency Data Feed, a partnership between Blockstream and Intercontinental Exchange (ICE), offers traders best in class real-time and historical cryptocurrency data from a strong and growing list of exchange partners worldwide. With over 25 exchanges, 133 crypto and fiat currency pairs, and over 200M order book updates every day, the Cryptocurrency Data Feed is the most comprehensive and robust source of global cryptocurrency data.
In some cases, these advantages are unneeded, but in others they are quite powerful - powerful enough to be worth 3x longer confirmation times and paying $0.03 for a transaction (or, once scalability technology comes into play, $0.0003 for a transaction). Note that by creating privately administered smart contracts on public blockchains, or cross-chain exchange layers between public and private blockchains, one can achieve many kinds of hybrid combinations of these properties. The solution that is optimal for a particular industry depends very heavily on what your exact industry is. In some cases, public is clearly better; in others, some degree of private control is simply necessary. As is often the case in the real world, it depends.

Segregated Witnesses — The current Bitcoin transaction signature algorithm is complicated and flawed, leading to a problem known as transaction malleability. Segregated witnesses would eliminate that, improving the efficiency of much Bitcoin software considerably … and making much more significant innovations such as the Lightning Network (see below) possible.
That is however not all. Sidechains also have some specific use cases, unique to a certain blockchain. One example is the usage of sidechains in EOS. EOS is currently facing a RAM problem. RAM is too expensive and developers are complaining. Sidechains could compete with the EOS mainchain by having lower RAM prices, this would lead to competition, incentivizing both the EOS mainchain block producers and sidechain block producers (mainchain and sidechains of EOS are maintained by the same group of block producers) to keep the RAM price as low as possible. This also means there is more RAM available, so the RAM price will go down as a result.
bitcoin and blockchain blockchain blockchain and enterprise blockchain and finance blockchain and healthcare blockchain network Consensus consensus protocol digital identity Hyperledger hyperledger fabric IBM Blockchain permissioned network Praveen Jayachandran private blockchain public and private blockchain public blockchain public vs private blockchain supply chain the linux foundation
×