Sidechains allow cryptocurrencies to interact with one another. They add flexibility and allow developers to experiment with Beta releases of Altcoins or software updates before pushing them on to the main chain. Traditional banking functions like issuing and tracking ownership of shares can be tested on sidechains before moving them onto main chains. If the security mechanisms for sidechains can be bolstered, sidechain technology holds promise for massive blockchain scalability.
Frankly, secure implementation of Bitcoin is already a pain in the ass .. adding more complexity just seems like the wrong move at this point. It’s already trying to be a currency, a networking protocol and a client in the same codebase. Adding turing complete (or not) scripts with arbitrary outcomes, multiple versions of the official client cooperating, multiple clients, and now multiple blockchains is basically the nail in the coffin in terms of widespread implementation.
Contrary to popular belief, aided by deceptive blockchain marketing, blockchains are not a good solution for storing data. Each piece of information that you store in the blockchain sits in hundreds or more nodes (more than 100,000 in the case of Bitcoin) making it an extremely costly solution. This is why the Iryo Network doesn’t store data on blockchain but instead, uses blockchain to ensure the transparency of transactions. As a disclaimer, competitors also don’t save medical data on the chain itself (even those who use private chains). Instead, only the fingerprint aspect of a medical record file or a hash is stored on the blockchain.
– The manipulation of the blockchain: It is indeed possible to come back at any time on the transactions that have already been added to the blockchain and therefore change the balance of the members. In a public blockchain, such operation would require that 51% of the hashing power (i.e capacity to mine) is concentrated in the hands of the same entity. This not theory anymore since it happened beginning 2014 when the cooperative of GHash minor reached the 51% threshold.
In private blockchains, only specific, pre-chosen entities have the ability to create new transactions on the chain (this is known as “write permissions”). Thus, a private blockchain is a closed network that offers constituents the benefits of the technology, but is not necessarily decentralized or distributed, even among its members. The extent to which each constituent can view (“read”) and create and validate transactions (“write”) is up to the developers of the chain.
SoluLab Inc is leading Blockchain, Mobile and Web development company, started by ex vice president of Goldman Sachs and ex principal software architect of Citrix. SoluLab Inc provides full spectrum, 360 degree services to enterprises, startups and entrepreneurs helping turn their dreams into awesome software products. We help enterprises to dominate the decentralized world with our top-notch blockchain development sol ... Read more
If one group of nodes continues to use the old software while the other nodes use the new software, a split can occur. For example, Ethereum has hard-forked to "make whole" the investors in The DAO, which had been hacked by exploiting a vulnerability in its code.[31] In this case, the fork resulted in a split creating Ethereum and Ethereum Classic chains. In 2014 the Nxt community was asked to consider a hard fork that would have led to a rollback of the blockchain records to mitigate the effects of a theft of 50 million NXT from a major cryptocurrency exchange. The hard fork proposal was rejected, and some of the funds were recovered after negotiations and ransom payment.[32]
Quest Global Technologies is a leading software development organization that works on Blockchain, customized ERP, Mobile Apps, Salesforce and Web Development. Quest Global Technologies has been rated as TOP mobile application developers by Appfutura and is covered by Entrepreneur Magazine. Quest Global Technologies has the vision to make its clients successful by leveraging technology to increase sales, automation and reduce wastage. www.cryp ... Read more
The block time is the average time it takes for the network to generate one extra block in the blockchain.[27] Some blockchains create a new block as frequently as every five seconds.[28] By the time of block completion, the included data becomes verifiable. In cryptocurrency, this is practically when the transaction takes place, so a shorter block time means faster transactions. The block time for Ethereum is set to between 14 and 15 seconds, while for bitcoin it is 10 minutes.[29]

As you can see, several of these real-world demands for the evolution of the initial Bitcoin implementation are still highly relevant. Trade-offs between scalability and decentralization are demonstrated with Ethereum’s focus on decentralization first and resulting complexities in developing scalable solutions. The increased emphasis on smart contract functionality, pegging real-world assets to blockchains, and experimentation of altcoins that are currently ongoing also represent the forward-thinking ideas outlined in the paper.

Similarly, a side chain is a separate blockchain that runs in parallel to the main chain. The term is usually used in relation to another currency that’s pegged to the currency of the main chain. For example, staying with the Starcraft motif, say we had an in-game currency called Minerals (oh wait, we do!). We could allow players to peg their Ether (or ETH) to purchase more Minerals in-game. So we reserve some ETH on the main chain, and peg, say 500 Minerals to 1 ETH.
First of all, one should not confuse private and public blockchains. They have one obvious similarity – they are blockchains, decentralized networks. Every participant of the network keeps a copy of this shared ledger, and all these copies are kept sync with the help of a certain consensus protocol. It means that all the participants of the network have access to identical information. Also, all the networks are immutable, and the information they contain can’t be altered.
The top 10 Ethereum decentralized apps (DApps) have daily active user counts in the thousands. Compare this with a centralized platform like Facebook, which has over a billion daily users, and you can see just how small scale blockchain use still remains. For a detailed comparison, read “State of the DApps: 5 Observations From Usage Data (April 2018)”.
The NPD report noted IBM is partnering with nine retailers and food companies (Walmart, Unilever, Nestle, Dole, Tyson Foods, Golden State Foods, McCormick & Co., McLane Co., and Driscoll’s) to revamp data management processes with blockchain. Walmart uses blockchain in China to source its pork all the way from the pig to the customer. This enables the retailers to provide transparency to all the players along the supply chain.
Given all of this, it may seem like private blockchains are unquestionably a better choice for institutions. However, even in an institutional context, public blockchains still have a lot of value, and in fact this value lies to a substantial degree in the philosophical virtues that advocates of public blockchains have been promoting all along, among the chief of which are freedom, neutrality and openness. The advantages of public blockchains generally fall into two major categories:
Function Transactions executed between the locks and unlocks of the main chain tokens don't bloat the main chain. As the technology of a side chain is connected to its main chain, it can be used to build on the developments of the main chain and introduce new features to the market. Child chains serve as the transactional chains of the parent-child architecture, as the parent chain retains minimal features.
Cohen recently noted that before blockchain is practical in retail, brands have to understand its relevance. NPD said it’s not just about payment methods or sourcing transparency. It also has the potential to touch all areas of a company. Cohen highlights a few areas where blockchain has the ability to impact retail including revolutionizing supply chain management, preventing against counterfeiting, simplifying payments and creating safer data security.
Jump up ^ Redrup, Yolanda (29 June 2016). "ANZ backs private blockchain, but won't go public". Australia Financial Review. Archived from the original on 3 July 2016. Retrieved 7 July 2016. Blockchain networks can be either public or private. Public blockchains have many users and there are no controls over who can read, upload or delete the data and there are an unknown number of pseudonymous participants. In comparison, private blockchains also have multiple data sets, but there are controls in place over who can edit data and there are a known number of participants.
I have a hard time swallowing that Bitcoin “isn’t a ledger”. That’s like saying “Bitcoin isn’t the blockchain”, and if you take the blockchain away from Bitcoin, you aren’t really left with much (including, sidechains). Perhaps Bitcoin isn’t a ledger *from the perspective* of individual transactions, but by the same logic, nothing that isn’t transaction data is.

Bitcoin and Ethereum blockchains use the ‘proof of work’ (POW) consensus algorithm to provide maximum security. It relies on a process called ‘mining’, which involves nodes trying to find the cryptographic hash of the last recorded block in order to create a new block. This is a massive number-crunching operation. It’s computing-power and energy-intensive, and becomes increasingly costly as the blockchain length grows. Read more about POW in this article “Proof of work vs proof of stake comparison”. This makes such blockchains impractical in a large business context.
In order to trade assets from the mainchain for assets from the sidechain, one would first need to send their assets on the mainchain to a certain address, effectively locking the assets up. After the transaction has been completed, a confirmation will be communicated to the sidechain. The sidechain will then release a certain amount of the assets on the sidechain to the user, equivalent to the amount of assets ‘locked up’ on the mainchain times the exchange rate. To trade the assets from the sidechain for assets of the mainchain, one would need to do the same, just the other way around.
A consortium blockchain is part public, part private. This split works at the level of the consensus process: on a consortium chain, a pre-selected group of nodes control the consensus process, but other nodes may be allowed to participate in creating new transactions and/or reviewing it. The specific configuration of each consortium chain (i.e., which nodes have the power to authorize transactions via the consensus process, which can review the history of the chain, which can create new transactions, and more) is the decision of each individual consortium.
Alpha functions as a sidechain to Bitcoins testnet. The peg mechanism currently works through a centralized protocol adapter, as stated in the sidechains whitepaper. An auditable federation of signers manages Testnet coins transferred to the sidechain. The federation is also relied upon to produce blocks through the signed blocks element. This creates the possibility of exploring the possibilities of the new chain using different security trade-offs.
Federated Blockchains operate under the leadership of a group. As opposed to public Blockchains, they don’t allow any person with access to the Internet to participate in the process of verifying transactions. Federated Blockchains are faster (higher scalability) and provide more transaction privacy. Consortium blockchains are mostly used in the banking sector. The consensus process is controlled by a pre-selected set of nodes; for example, one might imagine a consortium of 15 financial institutions, each of which operates a node and of which 10 must sign every block in order for the block to be valid. The right to read the blockchain may be public, or restricted to the participants.
Setting up an environment to test and research blockchain requires an ecosystem with multiple systems to be able to develop research and test. The big players in the cloud industry like Amazon(AWS), Microsoft(Azure), IBM(BlueMix) have seen the potential benefits of offering blockchain services in the cloud and started providing some level of BaaS to their customers. Users will benefit from not having to face the problem of configuring and setting up a working blockchain. Hardware investments won’t be needed as well. Microsoft has partnered with ConsenSys to offer Ethereum Blockchain as a Service (EBaaS) on Microsoft Azure. IBM(BueMix) has partnered with Hyperledger to offer BaaS to its customers. Amazon announced they would be offering the service in collaboration with the Digital Currency Group. Developers will have a single-click cloud-based blockchain developer environment, that will allow for rapid development of smart contracts.

In order to trade assets from the mainchain for assets from the sidechain, one would first need to send their assets on the mainchain to a certain address, effectively locking the assets up. After the transaction has been completed, a confirmation will be communicated to the sidechain. The sidechain will then release a certain amount of the assets on the sidechain to the user, equivalent to the amount of assets ‘locked up’ on the mainchain times the exchange rate. To trade the assets from the sidechain for assets of the mainchain, one would need to do the same, just the other way around.


Nodes can be trusted to be very well-connected, and faults can quickly be fixed by manual intervention, allowing the use of consensus algorithms which offer finality after much shorter block times. Improvements in public blockchain technology, such as Ethereum 1.0's uncle concept and later proof of stake, can bring public blockchains much closer to the "instant confirmation" ideal (eg. offering total finality after 15 seconds, rather than 99.9999% finality after two hours as does Bitcoin), but even still private blockchains will always be faster and the latency difference will never disappear as unfortunately the speed of light does not increase by 2x every two years by Moore's law.
The problem with Ethereum is that transactions are executed one after another. However, Aelf differs in its parallel computing blockchain capability. It scales transaction computing power inside a single side chain. Now imagine the power when you have thousands of side chains. For any unrelated transactions, it is safe to execute them concurrently.
As we’ve talked about, writing to the blockchain is slow and expensive. This is because every node in the entire network needs to verify and slurp in the whole blockchain and all the data it contains. Executing a large smart contract on a blockchain can be prohibitively expensive, and doing things like storing images on blockchains is economically infeasible.
The main point of a side-chain is to allow cryptocurrency networks to scale and interact with one-another. For example alt-coins and Bitcoin run on separate chains, however side chains allow for these separate currencies to be transferred through these two-way 'portal's or interfaces via a fixed conversion amount. Added benefits of side-chains are different asset classes like,stocks, bonds etc being integrated through a converted price onto the main chain, along with additional functionality like smart contracts,unique D-Apps, micro-payments and security updates that can be later incorporated into the primary network from these side-chains.
2. Ardor’s Blockchain as a service platform for business: Ardor uses the Proof of Stake consensus mechanism. Ardor calls its sidechains ‘childchains’, and they are tightly integrated into the main chain. Security is enhanced because all transactions are processed and secured by parent chain forgers. Most transactions are pushed down to the childchain level, as the parent mainchain retains minimal features. Global entities such as assets and currencies across chains can be accessed through childchains.
For example, Banks A and B often settle thousands of transactions per day. It would be extremely expensive for all of those transactions to be committed to the main blockchain, so A and B set up a side-chain. At the end of each day, at most one transaction is committed to the main blockchain (the only possible outcomes are A and B's balances remain the same, or one of their balances decreases and the other's increases).

Liquid is the world's first federated sidechain that enables rapid, confidential, and secure bitcoin transfers. Participating exchanges and Bitcoin businesses deploy the software and hardware that make up the Liquid network, so that they can peg in and out of the Bitcoin blockchain and offer Liquid’s features to their traders. Liquid provides a more secure and efficient system for exchange-side bitcoin to move across the network.
When blockchain technology was introduced to the public in 2008 (via Satoshi Nakamoto’s famous white paper), it would have been hard to predict that private or consortium blockchains would become popular. But recently, there’s been a lot of buzz about this in the digital currency community. Many companies are beginning to experiment with blockchain by implementing private and consortium chains, although some people are critical of this. This discussion not only centers on use cases and benefits, but whether non-public blockchains are an appropriate application of the protocol to begin with.
×