The block time is the average time it takes for the network to generate one extra block in the blockchain.[27] Some blockchains create a new block as frequently as every five seconds.[28] By the time of block completion, the included data becomes verifiable. In cryptocurrency, this is practically when the transaction takes place, so a shorter block time means faster transactions. The block time for Ethereum is set to between 14 and 15 seconds, while for bitcoin it is 10 minutes.[29]
Let me explain. The Lightning Network allows for the creation of “micropayment channels” across which multiple Bitcoin transactions can be securely performed without interacting with the blockchain, except for the initial transaction that initiates the channel. There is no counterparty risk: if any party ceases to cooperate, and/or does not respond within an agreed-on time limit, the channel can be closed and all its outstanding transactions kicked up to the blockchain to be settled there.
2) Yea, blockchain could be a suboptimal MQ Series, a slower append only persistent wire that has a lot of ready-made tools for audit and security analysis (ecosystem argument). As blockchain ecosystem grows all kinds of data transformation tools will appear (e.g. we are working on such). Inside blockchain could be tuned to be less PoW intensive and to cut blocks faster. Besides, the variations of PoS or a hybrid PoW + PoS scheme are emerging which could use the fact that inside, as you say, all network participants can have clear identities, unlike on the public bitcoin’s blockchain.
Security: RSK´s blockchain is secured by merge-mining, which means that they can achieve the same security as Bitcoin in terms of double-spend prevention and settlement finality. The 2way peg security will first rely in a federation holding custody of bitcoins, and later switch to an automatic peg, when the community accepts the security trade-offs of the automatic peg.
It’s the IBM “blockchain”. Basically Apache Kafka queue service, where they have modified the partitions. Each partition is an ordered, immutable sequence of messages which are continuously appended. They added some “nodes” to clean the inputs and voila; blockchain! We should add that there are no blocks, but batches of transactions are renamed to fit the hype better. Since everything gets written in one queue at the end of the day, IBM offers the bluemix cloud server (priced at 120.000$ per year) to host the service. Smaller test packages with a couple of input cleaning nodes go reportedly for 30.000$.
@tetsu – not sure what you mean. My reading of the sidechains paper is that the worst case scenario is that an attacker manages to “reanimate” Bitcoins on the main blockchain that had been sent to the sidechain… but that would be the attacker stealing the coins from the rightful owner on the sidechain. From Bitcoin’s perspective, the coins were always going to be reanimated…. so the risk is entirely borne by the holder(s) on the sidechain. Am I missing something?
@gendal, good question. Think of the identity hash as a bitcoin address, it is indeed public. So to assert anything with this identity you need to sign the object you are creating or changing with the identity’s private key. Specifically it is a private key that corresponds to a public key that you published in your identity’s object (json). The signature is not placed on the bitcoin transaction, as OP_RETURN has only 40 bytes. The signature is added to a [json] object that is modified with this identity. If you see any fault with this, please let me know.
In simple terms, public blockchains can receive and send transactions from anybody in the world. They can also be audited by anybody, and every node has as much transmission power as any other. Before a transaction is considered valid, it must be authorized by each of its constituent nodes via the chain’s consensus process. As long as each node abides by the specific stipulations of the protocol, their transactions can be validated, and thus add to the chain

Put simply, sidechaining is any mechanism that allows tokens from one blockchain to be securely used within a completely separate blockchain but still moved back to the original chain if necessary. By convention the original chain is normally referred to as the "main chain", while any additional blockchains which allow users to transact within them in the tokens of the main chain are referred to as "sidechains". For example, a private Ethereum-based network that had a linkage allowing ether to be securely moved from the public Ethereum main chain onto it and back would be considered to be a sidechain of the public network.

This segment is where we have seen the most rapid metamorphosis in the past year, mostly in financial services. These solutions are industry-specific, and they are based on private blockchain or ledger infrastructures. A caveat here is that some of these are not full blockchains. Rather, they are distributed ledgers, which are a subset of blockchain capabilities. And some don’t even include a consensus element, which takes the implementation another level down from distributed ledger tech.
Intellectsoft is a global full-cycle custom software development company that helps businesses to overcome the technological challenges of digital transformation through innovation and the use of emerging technologies, like blockchain, augmented reality, artificial intelligence, Internet of Things, and cloud computing. Intellectsoft has been operating in the IT industry for over 10 years, delivering solutions to Fortune 500 companies and legen ... Read more
Contrary to popular belief, aided by deceptive blockchain marketing, blockchains are not a good solution for storing data. Each piece of information that you store in the blockchain sits in hundreds or more nodes (more than 100,000 in the case of Bitcoin) making it an extremely costly solution. This is why the Iryo Network doesn’t store data on blockchain but instead, uses blockchain to ensure the transparency of transactions. As a disclaimer, competitors also don’t save medical data on the chain itself (even those who use private chains). Instead, only the fingerprint aspect of a medical record file or a hash is stored on the blockchain.

Sidechains offer a way for new, more radical settings and technologies to be implemented without affecting the main chain. This ensures that the main chain is as secure as possible whilst providing the freedom to explore options which would never be considered for use on the main chain. Sidechains should be quite powerful as they provide cases like anonymity, transparency, confirmation times and turing complete options like rootstock all whilst utilizing bitcoins rather than relying on the hashing power (security) of some far less secure alt coin. That being said… there is quite some controvery regarding blockstream’s funding of most of the core development team and their inflexiblity regarding the max blocksize. This inflexibility has directly contributed to the success of ethereum and it remains to be seen whether the dream of bitcoin maximalism will survive long enough for sidechains with all of the promised functionality to be rolled out. I am skeptical.
In the context of the two-way peg, the DMMS is represented by the Simplified Payment Verification Proof (SPV Proof), which is a DMMS confirming that a specific action on a PoW blockchain occurred. The SPV Proof functions as the proof of possession in the initial parent chain for its secure transfer to a sidechain. Symmetric two-way pegs are the primary type of two-way peg so we will only be referring specifically to the symmetric (compared to asymmetric) peg in this piece.
Zfort Group is a Full Service IT provider. We offer comprehensive and cost-effective web & mobile solutions: from consulting and website planning to application launch and support, serving businesses across the globe since 2000. Our highly motivated team includes 196 specialists in the following areas: PHP, ASP.NET, JavaScript, UI/UX Design, HTML/CSS, Quality Assurance, iOS and Android development.
The words block and chain were used separately in Satoshi Nakamoto's original paper, but were eventually popularized as a single word, blockchain, by 2016. The term blockchain 2.0 refers to new applications of the distributed blockchain database, first emerging in 2014.[13] The Economist described one implementation of this second-generation programmable blockchain as coming with "a programming language that allows users to write more sophisticated smart contracts, thus creating invoices that pay themselves when a shipment arrives or share certificates which automatically send their owners dividends if profits reach a certain level."[1]
Governance: Every enterprise needs to design standards, processes, methods, and tools to develop and operate a private blockchain. To achieve this they will need tools and frameworks such as IDE, testing framework, security auditing tool etc. For long-term successful operation, they also need to develop high-quality documentation. This requires proactive governance. Read more about the importance of the “Fundamental challenges with public blockchains” here.

Every node in a decentralized system has a copy of the blockchain. Data quality is maintained by massive database replication[8] and computational trust. No centralized "official" copy exists and no user is "trusted" more than any other.[4] Transactions are broadcast to the network using software. Messages are delivered on a best-effort basis. Mining nodes validate transactions,[22] add them to the block they are building, and then broadcast the completed block to other nodes.[24]:ch. 08 Blockchains use various time-stamping schemes, such as proof-of-work, to serialize changes.[34] Alternative consensus methods include proof-of-stake.[22] Growth of a decentralized blockchain is accompanied by the risk of centralization because the computer resources required to process larger amounts of data become more expensive.[35]
A typical use case for a private blockchain is intra-business: when a company decides to implement blockchain as a business solution, they may opt for a chain to which only company members have access. This is useful if there’s no need for anybody outside of the company to become part of the chain, because private blockchains are more efficient than public and consortium chains. Also, because they are smaller and contained, it is easier for a consensus process or other technical stipulation to be altered on a blockchain. So, for example, if the developers or proprietors want to change the cryptographic method which runs its consensus process, it is much easier to do this on a private blockchain than a public or consortium chain.

Jump up ^ Kopfstein, Janus (12 December 2013). "The Mission to Decentralize the Internet". The New Yorker. Archived from the original on 31 December 2014. Retrieved 30 December 2014. The network's 'nodes'—users running the bitcoin software on their computers—collectively check the integrity of other nodes to ensure that no one spends the same coins twice. All transactions are published on a shared public ledger, called the 'block chain.'
Blockstream recently released a whitepaper on “strong federations,” which is essentially their vision of a federated two-way peg system. Liquid is a sidechain created by Blockstream that uses the strong federations model. The sidechain is used to transfer bitcoins between centralized bitcoin institutions, such as exchanges, at a faster pace than the public Bitcoin blockchain.

Sidechain transactions using a two-way peg effectively only allow for intra-chain transactions. A transfer from Bitcoin (parent chain) to Ethereum (sidechain) would allow a user to use the functionality of Ethereum (i.e., fully expressive smart contracts), but the underlying original asset would remain precisely that, Bitcoin. So, a Bitcoin on an Ethereum sidechain technically remains a Bitcoin.
A blockchain is a continuously growing list of records called blocks, these blocks are linked and secured using cryptographic algorithms. Each block typically contains a hash (a link to a previous block), a timestamp as well as transaction data. Full nodes validate all the transactions, but are unable to settle the disagreements in regards to the order in which they were received. To prevent double-spending, the entire network needs to reach global consensus on the transaction order. It achieves this by using centralised parties or a decentralised proof of work or proof of stake algorithm (and its derivatives).

Public blockchains are just that, public. Anyone that wants to read, write, or join a public blockchain can do so. Public chains are decentralized meaning no one body has control over the network, ensuring the data can’t be changed once validated on the blockchain. Simply meaning, anyone, anywhere, can use a public blockchain to input transactions and data as long as they are connected to the network.