Saying that, Interoperability has been the missing link in conquering the obstacles faced by both private and public blockchains by empowering them to interact and exchange values across platforms seamlessly. Developers use of the Gallactic blockchain technology, that allow for private and public blockchains within its eco-system, will drive the potential to combine both public and private blockchains with innovative new solutions, designed to accomplish cross-chain exchange and greater compatibility is the way forward for all parties and their concerns.
If one group of nodes continues to use the old software while the other nodes use the new software, a split can occur. For example, Ethereum has hard-forked to "make whole" the investors in The DAO, which had been hacked by exploiting a vulnerability in its code.[31] In this case, the fork resulted in a split creating Ethereum and Ethereum Classic chains. In 2014 the Nxt community was asked to consider a hard fork that would have led to a rollback of the blockchain records to mitigate the effects of a theft of 50 million NXT from a major cryptocurrency exchange. The hard fork proposal was rejected, and some of the funds were recovered after negotiations and ransom payment.[32]
Decentralization and distribution are seen by many to be a major benefit of public blockchains, but not everybody shares this ethos. But this is not the only benefit of public blockchains, of course. Perhaps most importantly, their transparency makes them very secure: because they can be audited by anybody, it is easy to detect fraud on the chain. Security-via-openness is a principle well known in the open source world, and this strategy is also popular among some in the digital currency community. For example, all of the tools and content produced by the Ethereum team is open source. This helps to make Ethereum widely accessible and more secure.
I said above that you can build sophisticated rules into Bitcoin transactions to specify how ownership is proved. However, the Bitcoin scripting language is deliberately limited and many ideas in the Smart Contracts space are difficult or impossible to implement. So projects such as Ethereum are building an entirely new infrastructure to explore these ideas
“Not only is decentralization, open protocols, open source, collaborative development and living in the wild a feature of Bitcoin, that’s the whole point. And if you take a permissioned ledger and say, that’s all nice, we like the database part of it, can we have it without the open decentralized P2P [peer-to-peer] open source non-controlled distributed nature of it, well you just threw out the baby with the bathwater.” 
Note: Some would argue that such a system cannot be defined as a blockchain. Also, Blockchain is still in it’s early stages. It is unclear how the technology will pan out and will be adopted. Many argue that private or federated Blockchains might suffer the fate of Intranets in the 1990’s, when private companies built their own private LANs or WANs instead of using the public Internet and all the services, but has more or less become obsolete especially with the advent of SAAS in the Web2.
draglet is a German company founded in Munich 2013 and specializes in developing Blockchain Applications, Smart Contracts and Bitcoin/Cryptocurrency Exchange Software for businesses. The development team of draglet has been involved in the cryptocurrency world since its initial beginnings and possesses years of experience, providing companies with quality Blockchain applications on a global scale.    
Cohen recently noted that before blockchain is practical in retail, brands have to understand its relevance. NPD said it’s not just about payment methods or sourcing transparency. It also has the potential to touch all areas of a company. Cohen highlights a few areas where blockchain has the ability to impact retail including revolutionizing supply chain management, preventing against counterfeiting, simplifying payments and creating safer data security.
Private blockchains, or as I like to call them, shared databases, have a place in improving efficiency for financial institution for back-office settlement processes. They should not be seen as controversial, or part of some dialectic struggle between punks and police. To the extent that the identifying shroud of AML/KYC can be placed into public blockchain metadata (possible in Omni Layer transactions over the Bitcoin blockchain) there may even be interoperability between these two sides of the train tracks. Right now, due to state-granted monopolies to issue credit, most of the world's liquidity is still in banks. However, we believe that in the long-term, public blockchains, especially those based on work, will come to take a more significant part in the ‘System D’ informal economy, which is where most of the global economic growth will originate.” 
Private and Public Blockchain occurs when the financial enterprises start to explore the various blocks of the Blockchain technology. These two Blockchains are coming up with business oriented models as to obtain the difference between the two. The private blockchain generates at a lower cost and faster speed than the public blockchain. In the previous years, the blockchain has grown to become an interesting subject globally. It is becoming an integrated part in the financial sectors all over the digital world.
2. I have not had a chance to read the original article on side chains, but I am sure they deal with my next problem quite adequately. However it is not addressed in the above article. The primary problem that must be addressed with the notion of side chains, as I see it, would be the issue of the mining required to authenticate transactions and enter them into the block chain. The article mentions that side chain system more or less leaves the issue of verification within the side chain transactions as something of a black box, somewhat implying that they don’t have to be considered. But for any user, they would need to be both considered and understood. Such a process would presumably require mining verification of some kind, (our mental model must include consideration of the somewhat unusual verification method for bitcoin transactions themselves, – as everyone would agree, the verification process is not just a “checklist” of valid transaction strings. The validation process requires mining in much the same sense as mining new coin. None of this is mentioned or discussed in the article. ) As a result, the verification of side chain transactions outside the block chain introduces whole new layers of risk into the Bitcoin model, and new layers of unknowns.

– A consensus much faster: the fact that the consensus mechanism is centralized makes it much quicker. In fact, the term “consensus” is no longer adapted since it is rather a recording of transactions on the blockchain. Note that the entity responsible for managing the blockchain can decide to change the parameters of the blockchain and in particular to increase the size of the blocks to be able to add more transactions.
We use node 2 to receive a payment of 200 via the smart contract function, receivePayment(). Note that the receivePayment() function can accept a second parameter for the account address that is used to create this transaction. (Note that you can also set web3.eth.defaultAccount = "<…account address…>", after which you can just call receivePayment(200) with one parameter.)
Federated Blockchains operate under the leadership of a group. As opposed to public Blockchains, they don’t allow any person with access to the Internet to participate in the process of verifying transactions. Federated Blockchains are faster (higher scalability) and provide more transaction privacy. Consortium blockchains are mostly used in the banking sector. The consensus process is controlled by a pre-selected set of nodes; for example, one might imagine a consortium of 15 financial institutions, each of which operates a node and of which 10 must sign every block in order for the block to be valid. The right to read the blockchain may be public, or restricted to the participants.

The idea emerged that the Bitcoin blockchain could be in fact used for any kind of value transaction or any kind of agreement such as P2P insurance, P2P energy trading, P2P ride sharing, etc. Colored Coins and Mastercoin tried to solve that problem based on the Bitcoin Blockchain Protocol. The Ethereum project decided to create their own blockchain, with very different properties than Bitcoin, decoupling the smart contract layer from the core blockchain protocol, offering a radical new way to create online markets and programmable transactions known as Smart Contracts.
Public chains to the rescue! Public chains offer public transaction data that can be verified in real-time by anybody that cares to run a node. The more independent users or institutions that take part in verification, the more secure and decentralised the chain becomes! At Iryo, we strive to have every clinic doing full validation of the global state for the relevant smart contracts (EOS based). Public blockchains are mainly useful for two things; value routing (including initial creation and distribution) and trustless timestamping of messages.
2) Yes – I had to keep things short/simple in this intro article in order to get across the key ideas. But you’re right: the sidechains need to be secured. But how that happens is a matter for the sidechain. If somebody can produce a false “proof” that the locked Bitcoins should be released on the Bitcoin side then that’s a problem for the sidechain, of course (somebody presumably just had their coins stolen!) but it’s irrelevant (at a macro level) on the Bitcoin side.
Instead of adding new features directly to the bitcoin blockchain, sidechains allow developers to attach new features to a separate chain. Since the chains are still attached to the bitcoin blockchain, the features can take advantage of the cryptocurrency's network effects and test those applications, without harming the main network should vulnerabilities arise.

Fully private blockchains: a fully private blockchain is a blockchain where write permissions are kept centralized to one organization. Read permissions may be public or restricted to an arbitrary extent. Likely applications include database management, auditing, etc internal to a single company, and so public readability may not be necessary in many cases at all, though in other cases public auditability is desired.
^ Jump up to: a b c d e f g h i j k l "Blockchains: The great chain of being sure about things". The Economist. 31 October 2015. Archived from the original on 3 July 2016. Retrieved 18 June 2016. The technology behind bitcoin lets people who do not know or trust each other build a dependable ledger. This has implications far beyond the crypto currency.
Unfortunately our second option cannot be done yet, because to use these sidechains, main chain (here it is bitcoin) needs to do some upgrade (soft fork). By the way, upgrades in public blockchains are very painful yet. There will be a user activated soft fork (UASF) on August 1. All bitcoin forms’ trend topic is this soft fork which is about a code change for Segregated Witness Adoption.
“A private blockchain is hardly different from a traditional database. The term is synonymous with glorified databases. But the advantage is that if they are to ever start adding public nodes to it then it becomes so much more. An open blockchain is the best method for having a trustless ledger. The broader the range of decentralized adoption the better. The Bitcoin blockchain hits all those points. 
×