Frankly, secure implementation of Bitcoin is already a pain in the ass .. adding more complexity just seems like the wrong move at this point. It’s already trying to be a currency, a networking protocol and a client in the same codebase. Adding turing complete (or not) scripts with arbitrary outcomes, multiple versions of the official client cooperating, multiple clients, and now multiple blockchains is basically the nail in the coffin in terms of widespread implementation.
Over the last year the concept of “private blockchains” has become very popular in the broader blockchain technology discussion. Essentially, instead of having a fully public and uncontrolled network and state machine secured by cryptoeconomics (eg. proof of work, proof of stake), it is also possible to create a system where access permissions are more tightly controlled, with rights to modify or even read the blockchain state restricted to a few users, while still maintaining many kinds of partial guarantees of authenticity and decentralization that blockchains provide. Such systems have been a primary focus of interest from financial institutions, and have in part led to a backlash from those who see such developments as either compromising the whole point of decentralization or being a desperate act of dinosaurish middlemen trying to stay relevant (or simply committing the crime of using a blockchain other than Bitcoin). However, for those who are in this fight simply because they want to figure out how to best serve humanity, or even pursue the more modest goal of serving their customers, what are the practical differences between the two styles?
The paper outlines some critical developments and associated problems that were both currently trending and forward-thinking at the time, many of them still very much relevant today. At the time, altcoins were quickly gaining prominence and the problems associated with their volatility, security, and lack of interoperability with Bitcoin raised concerns. The paper primarily addressed 6 issues that pegged sidechains aimed to provide a solution:

These in-channel payments would be instant, unlike current Bitcoin payments, which require an hour to be fully verified on the blockchain. What’s more, payments would be routable across multi-hop paths, like packets across the Internet — so instead of having to create a channel to every new counterparty, you could maintain a few channels to a small number of well-connected secure intermediaries and send/receive money through them.
Sidechains with specific purposes could be formed with specific features while still enjoying the widespread adoption and value that Bitcoin holds.  Most importantly it can add these features without consensus from the Bitcoin community. Sidechains have the potential to replace many Cryptocurrencies as it allows features that were previously unique to these currencies to be available on Bitcoin. It also allows developers to experiment with sidechains and scope its full potential while still keeping coins linked to Bitcoin.
^ Jump up to: a b c d e f g h i j k l "Blockchains: The great chain of being sure about things". The Economist. 31 October 2015. Archived from the original on 3 July 2016. Retrieved 18 June 2016. The technology behind bitcoin lets people who do not know or trust each other build a dependable ledger. This has implications far beyond the crypto currency.

Zfort Group is a Full Service IT provider. We offer comprehensive and cost-effective web & mobile solutions: from consulting and website planning to application launch and support, serving businesses across the globe since 2000. Our highly motivated team includes 196 specialists in the following areas: PHP, ASP.NET, JavaScript, UI/UX Design, HTML/CSS, Quality Assurance, iOS and Android development.
In order to spend them, you have to prove you’re entitled to do so. And you do that by providing the solution to a challenge that was laid down when they were sent to you in the first place. This challenge is usually just: “prove to the world that you know the public key that corresponds to a particular Bitcoin address and are in possession of the corresponding private key”. But it can be more sophisticated than that.
New organizational structures will emerge that will make inside/outside much less clear. These clear boundaries started to erode with the extranets in the 90s, then with the multi-tenant cloud platforms, and lately with the smartphones and the IoT. As we move forward we will see value chains where participants have multiple roles and affiliations. We will be designing token based systems that produce gains for any participants, internal or external.

Note: Some would argue that such a system cannot be defined as a blockchain. Also, Blockchain is still in it’s early stages. It is unclear how the technology will pan out and will be adopted. Many argue that private or federated Blockchains might suffer the fate of Intranets in the 1990’s, when private companies built their own private LANs or WANs instead of using the public Internet and all the services, but has more or less become obsolete especially with the advent of SAAS in the Web2.
Sometimes separate blocks can be produced concurrently, creating a temporary fork. In addition to a secure hash-based history, any blockchain has a specified algorithm for scoring different versions of the history so that one with a higher value can be selected over others. Blocks not selected for inclusion in the chain are called orphan blocks.[22] Peers supporting the database have different versions of the history from time to time. They keep only the highest-scoring version of the database known to them. Whenever a peer receives a higher-scoring version (usually the old version with a single new block added) they extend or overwrite their own database and retransmit the improvement to their peers. There is never an absolute guarantee that any particular entry will remain in the best version of the history forever. Because blockchains are typically built to add the score of new blocks onto old blocks and because there are incentives to work only on extending with new blocks rather than overwriting old blocks, the probability of an entry becoming superseded goes down exponentially[23] as more blocks are built on top of it, eventually becoming very low.[1][24]:ch. 08[25] For example, in a blockchain using the proof-of-work system, the chain with the most cumulative proof-of-work is always considered the valid one by the network. There are a number of methods that can be used to demonstrate a sufficient level of computation. Within a blockchain the computation is carried out redundantly rather than in the traditional segregated and parallel manner.[26]
Another promise of sidechains is the ability to have a stronger and faster mainchain, as transactions can happen on one of the sidechains. If users or developers are dissatisfied with the costs of sending a transaction and the transaction speed of the mainchain, they can use and or deploy their dapp on one of the sidechains. This leads to a more diversified network and a stronger, faster and more robust mainchain.
This approach isn’t fool-proof, but it’s not by mistake that the system looks the way it does today (that’s my history degree talking). Despite best technical efforts, human problems remain within the realm of probability. From http://www.nytimes.com/2009/01/15/books/15masl.html: “…blame cannot be easily assigned: not even the most sophisticated economists of the era could accurately predict disaster, let alone guard against it. The effects of a public herd mentality at the time of the [insert catastrophe here] are depicted, all too recognizably, as unstoppable.”
Blockchain, trust, decentralization, Bitcoin, transparency, anonymity, blockchain, blockchain, blockchain. These words seem to appear randomly on the Web regardless the theme of an article you read. Don’t you know how to implement blockchain in art? There’s definitely someone who can tell you. Do you wonder how banking can benefit from blockchain? No worries, some projects already do it – just search for the use cases.
The second option will be to use sidechains. Blockstream first announced side chain in 2014 and published its whitepaper (https://blockstream.com/sidechai...). I believe in the future, bitcoin will have its desired flexibility with its sidechains. The idea of the sidechain is you can innovate and design your solution freely in the sidechains. These sidechains are independent, if they are failed or hacked, they won't damage other chains. So damage will be limited within that chain, for that reason you can be less conservative. Otherwise you would be more risk averse, if you had 42.5 billion dollar market cap like Bitcoin.
A Sidechain, in simplest terms, is just a separate blockchain but is attached to the parent through the use of a two-way peg which allows for assets to be interchangeable and moved across the chain at a fixed deterministic exchange rate. This two-way peg works by utilizing simple payment verification or SPV as it's otherwise known. To show and prove ownership of the assets on the parent chain.

Imagine over several hours, the camps produced a chain of messages that each required intensive Proof of Work. This means that the majority of the camps had to agree on this chain of messages and each camp can confidently trust the final outcome. It’s important to note here that Proof of Work does not care about the message itself, only that the nodes agreed to the final message. This majority network consensus keeps it secure and provides a solution to the Byzantine Generals Problem, leading to Byzantine Fault Tolerance.
Private blockchains are valuable for solving efficiency, security and fraud problems within traditional financial institutions, but only incrementally. It’s not very likely that private blockchains will revolutionize the financial system. Public blockchains, however, hold the potential to replace most functions of traditional financial institutions with software, fundamentally reshaping the way the financial system works.
“Not only is decentralization, open protocols, open source, collaborative development and living in the wild a feature of Bitcoin, that’s the whole point. And if you take a permissioned ledger and say, that’s all nice, we like the database part of it, can we have it without the open decentralized P2P [peer-to-peer] open source non-controlled distributed nature of it, well you just threw out the baby with the bathwater.” 

NPD said the next step for retailers is to develop their own cryptocurrency to prevent customers from having to use credit cards when shopping online. NPD said the practice makes sense for the retailer, because if the customer could send the payment transfer via blockchain, it would avoid third-party clearing house fees retailers pay for processing card payments.
In October 2014, the MIT Bitcoin Club, with funding from MIT alumni, provided undergraduate students at the Massachusetts Institute of Technology access to $100 of bitcoin. The adoption rates, as studied by Catalini and Tucker (2016), revealed that when people who typically adopt technologies early are given delayed access, they tend to reject the technology.[85]
bitcoin and blockchain blockchain blockchain and enterprise blockchain and finance blockchain and healthcare blockchain network Consensus consensus protocol digital identity Hyperledger hyperledger fabric IBM Blockchain permissioned network Praveen Jayachandran private blockchain public and private blockchain public blockchain public vs private blockchain supply chain the linux foundation
×