@quinn – thanks for the comment. I probably didn’t write clearly enough… I was trying to point out that none of the higher-level concepts we’re familiar with (addresses, bitcoins, the “ledger”, etc) actually exist at the protocol level…. it’s just transactions, transaction outputs, unspent transaction outputs, etc… they combine to create the illusion we’re all familiar with.
A blockchain is so-called “public” (or open) when anyone can become a member of the network without conditions of admission. In other words, anyone wishing to use the service proposed by the network can download the protocol locally without having to reveal his or her identity or meet predetermined criteria. A protocol is a computer program that could be compared to a Charter in that it defines the rules of operation of a network based on a blockchain. For example, the members of the bitcoin network download the Bitcoin protocol (through the intermediary of their “wallet”) to be able to join the network and exchange bitcoins, but the only condition is to have an Internet connection.
What is the difference between a public blockchain and a private blockchain? Does it matter? Which is better? Gallactic believes that currently there are pros and cons between both Private and Public Blockchains, but time and “convergence”, a term that is gaining prominence in the Blockchain Industry, is clearly showing that the lines between these categories, once clear, are starting to fade.
– A cost per transactions which can be high: Miners only participate in the process of mining because they hope to get the reward (coinbase and fees) allocated to minors who have added a block to the blockchain. For them it is a business, this reward will finance the costs they have incurred in the process of mining (electricity, computer equipment, internet connection). Tokens that are distributed to them are directly issued by the Protocol, but the fees are supported by the users. In the case of the bitcoin, for example, minors receive 12.5 bitcoins for each block added, to which are added fees paid by the users to add their transactions to the blocks. These fees are variable and the higher the demand to add transactions, the higher the fees.
“The reason why you put up private blockchains is potentially because you want to have control over the participants in the blockchain. So as we have banks and financial institutions, who have to worry heavily about regulations, they can’t use the public blockchains right now because they are open and permission-free, and anyone can participate, and that’s contradictory to the regulations to which they must abide.
Sidechains offer a way for new, more radical settings and technologies to be implemented without affecting the main chain. This ensures that the main chain is as secure as possible whilst providing the freedom to explore options which would never be considered for use on the main chain. Sidechains should be quite powerful as they provide cases like anonymity, transparency, confirmation times and turing complete options like rootstock all whilst utilizing bitcoins rather than relying on the hashing power (security) of some far less secure alt coin. That being said… there is quite some controvery regarding blockstream’s funding of most of the core development team and their inflexiblity regarding the max blocksize. This inflexibility has directly contributed to the success of ethereum and it remains to be seen whether the dream of bitcoin maximalism will survive long enough for sidechains with all of the promised functionality to be rolled out. I am skeptical.
In October 2014, the MIT Bitcoin Club, with funding from MIT alumni, provided undergraduate students at the Massachusetts Institute of Technology access to $100 of bitcoin. The adoption rates, as studied by Catalini and Tucker (2016), revealed that when people who typically adopt technologies early are given delayed access, they tend to reject the technology.[85]

Start mining on node 1 by using the function miner.start(1), where 1 refers to the number of threads. Note that the miner.start(n) function will always return "null." Unless you have many CPU cores, keep the thread number low to avoid high CPU usage. Note that mining without any pending transaction can still earn your default account incentive (ETH). It creates empty blocks, thus strengthening the integrity of the blockchain tree.

Ardor is a blockchain platform predicated on childchains (sidechains) that use proof of stake (PoS) consensus. It uses the primary chain as a security chain and the childchains for processing transactions to increase scalability. Their design is specifically focused on speed and efficiency through PoS consensus and removing blockchain bloat through pruning.
Confidential Transactions — At present, all Bitcoin transactions are completely public, albeit pseudonymous. Confidential Transactions, as the name implies, conceal the amount being transferred to all except the sender, the recipient, and others they designate. The resulting transaction size is significantly larger, but includes a sizable “memo” field that can be used to store transaction or other metadata, and is still smaller than eg Zerocoin.(Note that this isn’t as confidential as Zerocash, which conceals both the amount and the participants involved in any transaction, through the mighty near-magic of zk-Snarks. Mind you, Zerocash would require an esoteric invocation ritual to initiate its network. No, really. But that’s a subject for a separate post.)
Given all of this, it may seem like private blockchains are unquestionably a better choice for institutions. However, even in an institutional context, public blockchains still have a lot of value, and in fact this value lies to a substantial degree in the philosophical virtues that advocates of public blockchains have been promoting all along, among the chief of which are freedom, neutrality and openness. The advantages of public blockchains generally fall into two major categories:

Zestminds is an IT consulting and services provider, providing end-to-end consulting for global clients. Zestminds has partnered with several start-ups to SME in building their next generation information infrastructure for competitive advantage. The Zestminds portfolio of services includes legacy application maintenance, large application development, e-strategy consulting and solutions. The offshore Model of the company leverages talent and inf ... Read more
However, even this would have its own separate value and wouldn't necessarily solve any issue especially if a market is deemed to be, well, worthless. The two-way peg isn't perfect however. Especially since SPV can theoretically be tricked into crediting more coins than were originally deposited. If the attack will then transfer those coins back onto the parent it would take coins from another user on the Sidechain to fund the imbalance. And in the process create a permanent dissilience between the two chains. In order to strengthen the security of a Sidechain beyond just SPV, it would require the parent to soft fork and upgrade its core wallet software so that both chains can then validate transfers between them.
The first work on a cryptographically secured chain of blocks was described in 1991 by Stuart Haber and W. Scott Stornetta.[10][6] They wanted to implement a system where documents' timestamps could not be tampered with or backdated. In 1992, Bayer, Haber and Stornetta incorporated Merkle trees to the design, which improved its efficiency by allowing several documents to be collected into one block.[6][11]
Sidechains interactuando con blockchain. Blockstream explica en su paper como, a las sidechains, se les añade una nueva pieza llamada two-way peg. Two-way peg es “el conector” entre ambas cadenas y se encarga de hacer la “magia” para que los bitcoins “salten” a la otra cadena. Juntando ambas cosas obtenemos las pegged sidechain: cadenas laterales conectadas en todo momento. En la imagen puedes observar como, incluso, las sidechain pueden interactuar entre ellas. ¿Llegaremos a un escenario de blockchains interactuando con aspecto fractal?
bitcoin and blockchain blockchain blockchain and enterprise blockchain and finance blockchain and healthcare blockchain network Consensus consensus protocol digital identity Hyperledger hyperledger fabric IBM Blockchain permissioned network Praveen Jayachandran private blockchain public and private blockchain public blockchain public vs private blockchain supply chain the linux foundation
×