Let me explain. The Lightning Network allows for the creation of “micropayment channels” across which multiple Bitcoin transactions can be securely performed without interacting with the blockchain, except for the initial transaction that initiates the channel. There is no counterparty risk: if any party ceases to cooperate, and/or does not respond within an agreed-on time limit, the channel can be closed and all its outstanding transactions kicked up to the blockchain to be settled there.
There are many critics of payment channels. Finding the quickest path between unconnected nodes is no trivial exercise. This is a classic “traveling salesman” problem that has been worked on by top computer scientists for decades. Critics argue that it is highly unlikely payment channels like Bitcoin’s Lightning and Ethereum’s Raiden will work as expected in practice due to complexities like the traveling salesman problem. The key for you is just to know that these projects and potential solutions to blockchain scalability issues exist. Many of the smartest minds in the industry are working actively to bring them to life.
By design, a blockchain is resistant to modification of the data. It is "an open, distributed ledger that can record transactions between two parties efficiently and in a verifiable and permanent way".[7] For use as a distributed ledger, a blockchain is typically managed by a peer-to-peer network collectively adhering to a protocol for inter-node communication and validating new blocks. Once recorded, the data in any given block cannot be altered retroactively without alteration of all subsequent blocks, which requires consensus of the network majority. Although blockchain records are not unalterable, blockchains may be considered secure by design and exemplify a distributed computing system with high Byzantine fault tolerance. Decentralized consensus has therefore been claimed with a blockchain.[8]
@gendal, good question. Think of the identity hash as a bitcoin address, it is indeed public. So to assert anything with this identity you need to sign the object you are creating or changing with the identity’s private key. Specifically it is a private key that corresponds to a public key that you published in your identity’s object (json). The signature is not placed on the bitcoin transaction, as OP_RETURN has only 40 bytes. The signature is added to a [json] object that is modified with this identity. If you see any fault with this, please let me know.
Decentralization and distribution are seen by many to be a major benefit of public blockchains, but not everybody shares this ethos. But this is not the only benefit of public blockchains, of course. Perhaps most importantly, their transparency makes them very secure: because they can be audited by anybody, it is easy to detect fraud on the chain. Security-via-openness is a principle well known in the open source world, and this strategy is also popular among some in the digital currency community. For example, all of the tools and content produced by the Ethereum team is open source. This helps to make Ethereum widely accessible and more secure.
Of course, the drawbacks of public and private blockchains are still very much present in the case consortium chains. This all depends on the way each consortium is constructed: a more public consortium chain will bear the burdens of public chains, while a more private one might suffer from the relative lack of openness and disintermediation. The right configuration depends on the needs and vision for each specific chain. Strategy and tailoring are always necessary to get the best solution.
Cabe destacar el papel de la gente de Blockstream, una de las compañías centradas en la búsqueda de este objetivo (con un extremeño en sus filas, Jorge Timón). Blockstream está trabajando actualmente en el desarrollo de un protocolo que permita crear sidechains. Son los responsables de uno de los papers más conocidos sobre el tema, publicado en Octubre del 2014:
Start preparing for STO in a week with a professional blockchain development team. We have real experience in the following platforms: Ethereum, Stellar, Hyperledger, EOS We developed the world’s first platform for real business assets tokenization on Stellar that raised 1,700,000$ ! SheerChain is a custom software development company and a trusted IT outsourcing provider for our clients worldwide. Combinin ... Read more

– A cost per transactions which can be high: Miners only participate in the process of mining because they hope to get the reward (coinbase and fees) allocated to minors who have added a block to the blockchain. For them it is a business, this reward will finance the costs they have incurred in the process of mining (electricity, computer equipment, internet connection). Tokens that are distributed to them are directly issued by the Protocol, but the fees are supported by the users. In the case of the bitcoin, for example, minors receive 12.5 bitcoins for each block added, to which are added fees paid by the users to add their transactions to the blocks. These fees are variable and the higher the demand to add transactions, the higher the fees.

The information on every public blockchain is subsequently replicated to sometimes thousands of nodes on the network. No one power administers it centrally, hence, hackers can’t destroy the network by crippling one central server. Read this article “What is Blockchain technology? A step-by-step Guide For Beginners”, for a more detailed description of the technology.
Fully private blockchains: a fully private blockchain is a blockchain where write permissions are kept centralized to one organization. Read permissions may be public or restricted to an arbitrary extent. Likely applications include database management, auditing, etc internal to a single company, and so public readability may not be necessary in many cases at all, though in other cases public auditability is desired.
“Blockchain offers a possible solution to these challenges with its decentralized ledger that can store a history of transactions across a shared database,” Cohen said in the report. “By making the record accessible and verifiable from anywhere in the world, blockchain can enable the authentication of goods and eradicate the criminal element of counterfeit goods in the retail supply chain. By pairing hardware chips with blockchain technology, a product can take on a digital history, going as far back as the raw materials that were used to make the product. This allows retailers and consumers to verify their purchased products are genuine.”
The problem with Ethereum is that transactions are executed one after another. However, Aelf differs in its parallel computing blockchain capability. It scales transaction computing power inside a single side chain. Now imagine the power when you have thousands of side chains. For any unrelated transactions, it is safe to execute them concurrently.
– The manipulation of the blockchain: It is indeed possible to come back at any time on the transactions that have already been added to the blockchain and therefore change the balance of the members. In a public blockchain, such operation would require that 51% of the hashing power (i.e capacity to mine) is concentrated in the hands of the same entity. This not theory anymore since it happened beginning 2014 when the cooperative of GHash minor reached the 51% threshold.
A typical use case for a private blockchain is intra-business: when a company decides to implement blockchain as a business solution, they may opt for a chain to which only company members have access. This is useful if there’s no need for anybody outside of the company to become part of the chain, because private blockchains are more efficient than public and consortium chains. Also, because they are smaller and contained, it is easier for a consensus process or other technical stipulation to be altered on a blockchain. So, for example, if the developers or proprietors want to change the cryptographic method which runs its consensus process, it is much easier to do this on a private blockchain than a public or consortium chain.
The cheapest and most simple option is doing calculations on your local network (off-chain) and integrating with main blockchain by sending the results. It has flaws; you cannot live full advantage of blockchain as we do in bitcoin, because you will still have existing constraints of your current system. Despite all this, it is still a valid option; perhaps you won't need all the features of blockchain technology. Perhaps it is just enough to use blockchain only for your pain points. Factom can be considered under that kind of option. They used bitcoin wisely in their design. They hold the actual mass data in their network and utilize stability of bitcoin in their solution. This project is so successful that at coindesk magazine, it is saying that Factom can be used for the land titles in Honduras. http://www.coindesk.com/debate-f...

Sidechains solve a lot of problems, but at what cost? The introduction of sidechains makes things even more complex and much harder to understand for those who are not actively involved in the blockchain space. This also divides assets, no more “one chain, one asset” adage, which further complicates things. And on a network level there are multiple independent unsynchronised blockchains interacting with each other.

My chief concern is not with the concept of side chains per se (yet). I have still much to learn about how they are being considered. I am only concerned with the way the concept is being presented here. However, I am sure that much of this was due to space restrictions as much as anything. The concept of side chains is an intriguing one. It is also clearly attempting to address a major problem with the whole Bitcoin scheme- namely the verification latency it introduces for transactions. This is only one of the hurdles facing Bitcoins acceptance into the world of commerce, but it is a considerable one.
Jump up ^ Iansiti, Marco; Lakhani, Karim R. (January 2017). "The Truth About Blockchain". Harvard Business Review. Harvard University. Archived from the original on 18 January 2017. Retrieved 17 January 2017. The technology at the heart of bitcoin and other virtual currencies, blockchain is an open, distributed ledger that can record transactions between two parties efficiently and in a verifiable and permanent way.

Given all of this, it may seem like private blockchains are unquestionably a better choice for institutions. However, even in an institutional context, public blockchains still have a lot of value, and in fact this value lies to a substantial degree in the philosophical virtues that advocates of public blockchains have been promoting all along, among the chief of which are freedom, neutrality and openness. The advantages of public blockchains generally fall into two major categories:


That might sound like a problem, but it isn’t because the box can only be opened infrequently (two or three times a year), and a super-majority of miners must leave a note on the box in advance. This note states exactly where the miners intend to transfer the money. The “correct” note is automatically generated by sidechain software, and is easy to check.
To most people, Bitcoin itself is already deeply esoteric (and many still find it risible.) But to cryptocurrency aficionados, tired old garden-variety Bitcoin is so five minutes ago. Explaining today’s new cryptocurrency hotness to a general audience is an interesting challenge–I have an engineering degree from a top-tier school and I write software for a living, and I still find much of this material pretty impenetrable on first acquaintance–but here goes:
Now, making experimental or rapid changes to Bitcoin is very risky and so change happens slowly. So if the one-size-fits-all architecture of Bitcoin doesn’t suit a particular use-case, you have a problem. You either have to use an entirely different cryptocurrency (or build one!). Or you have to use (or build) a centralized service, which brings new risks.
Now, making experimental or rapid changes to Bitcoin is very risky and so change happens slowly. So if the one-size-fits-all architecture of Bitcoin doesn’t suit a particular use-case, you have a problem. You either have to use an entirely different cryptocurrency (or build one!). Or you have to use (or build) a centralized service, which brings new risks.
S-PRO offers custom cross-platform mobile app development services and Blockchain development. We provide full cycle development solutions for Startups and small businesses. During years of MVP development we create our own flow how to turn idea into a valuable product. React Native is a core technology that we use in mobile development. Also our team know how to use Blockchain technology on your prolect. We use blockchain-based ledgers, ident ... Read more
Note: Some would argue that such a system cannot be defined as a blockchain. Also, Blockchain is still in it’s early stages. It is unclear how the technology will pan out and will be adopted. Many argue that private or federated Blockchains might suffer the fate of Intranets in the 1990’s, when private companies built their own private LANs or WANs instead of using the public Internet and all the services, but has more or less become obsolete especially with the advent of SAAS in the Web2.
This type of permissioned blockchain model offers the ability to leverage more than 30 years of technical literature to realize significant benefits. Digital identity in particular, is fundamental for most industry use cases, be it handling supply chain challenges, disrupting the financial industry, or facilitating security-rich patient/provider data exchanges in healthcare. Only the entities participating in a particular transaction will have knowledge and access to it — other entities will have no access to it. Permissioned blockchains also permit a couple of orders of magnitude greater scalability in terms of transactional throughput.
×