By the end of this post, you’ll be able to freely participate in conversations like the above. This is not a coding tutorial, as we’ll just be presenting important concepts at a high level. However, we may follow up with programming tutorials on these ideas. This article will be helpful to both programmers and non-programmers alike. Let’s get going!
If you’ve been keeping track of developments in the bitcoin industry, you’d know that the blockchain refers to the public ledger of transactions associated with the cryptocurrency. As the bitcoin ecosystem has grown in size and scale throughout the years, the blockchain has also increased considerably in length and storage size, prompting debates on whether or not to increase its block size limit.
In October 2014, the MIT Bitcoin Club, with funding from MIT alumni, provided undergraduate students at the Massachusetts Institute of Technology access to $100 of bitcoin. The adoption rates, as studied by Catalini and Tucker (2016), revealed that when people who typically adopt technologies early are given delayed access, they tend to reject the technology.[85]
Segregated Witnesses — The current Bitcoin transaction signature algorithm is complicated and flawed, leading to a problem known as transaction malleability. Segregated witnesses would eliminate that, improving the efficiency of much Bitcoin software considerably … and making much more significant innovations such as the Lightning Network (see below) possible.
By design, a blockchain is resistant to modification of the data. It is "an open, distributed ledger that can record transactions between two parties efficiently and in a verifiable and permanent way".[7] For use as a distributed ledger, a blockchain is typically managed by a peer-to-peer network collectively adhering to a protocol for inter-node communication and validating new blocks. Once recorded, the data in any given block cannot be altered retroactively without alteration of all subsequent blocks, which requires consensus of the network majority. Although blockchain records are not unalterable, blockchains may be considered secure by design and exemplify a distributed computing system with high Byzantine fault tolerance. Decentralized consensus has therefore been claimed with a blockchain.[8]
Blockstream is collaborating with industry leaders to create a Bitcoin micropayment system that supports high volumes of instant tiny payments using proportional transaction fees and that operates at the speed of light. We are now developing Bitcoin Lightning prototypes and creating consensus on interoperability. Our c-lightning implementation is the go-to code and specification for enterprise Lightning Network deployments on Bitcoin, and is what powers our easy-to-use Lightning Charge HTTP Rest API.
draglet is a German company founded in Munich 2013 and specializes in developing Blockchain Applications, Smart Contracts and Bitcoin/Cryptocurrency Exchange Software for businesses. The development team of draglet has been involved in the cryptocurrency world since its initial beginnings and possesses years of experience, providing companies with quality Blockchain applications on a global scale.    
You cannot be a crypto investor or entrepreneur without having a real understanding of the differences between these types of blockchains as well as their implications. Even if they are based on similar principles, their operation is, in fact, different to all levels. So the tokens issued by these blockchains will not be assessed in the same manner.

Consider a proof-of-existence application, where you want to authenticate your document in the Ethereum (for example) network, but you do not need your document to be online. So, you will store the hash generated from your document in the blockchain, but the document itself will be in your local machine, out of any blockchain-related structured, being off-chain.
First, clear your head of anything related to money, currency or payments. And clear your head of the word ledger, too. The mind-bending secret of Bitcoin is that there actually isn’t a ledger! The only data structures that matter are transactions and blocks of transactions. And it’s important to get this clear in your head if sidechains are going to make sense.
Decentralized web. The sidechain technology holds premises to expand one of the main values of the blockchains – the decentralization of confidence. There is no need for central structure behind the transactions - the holders of cryptocurrencies are free to use their assets the way they want. The sidechains make their deals even more protected and reliable.
“Not only is decentralization, open protocols, open source, collaborative development and living in the wild a feature of Bitcoin, that’s the whole point. And if you take a permissioned ledger and say, that’s all nice, we like the database part of it, can we have it without the open decentralized P2P [peer-to-peer] open source non-controlled distributed nature of it, well you just threw out the baby with the bathwater.” 
The great thing about Bitcoin, for a tech columnist like me, is that it’s simultaneously over-the-top cinematic and technically dense. Richard Branson recently hosted a “Blockchain Summit” at his private Caribbean island. There’s a Bitcoin Jet. At the same time, 2015 has seen the release of a whole slew of technically gnarly–and technically fascinating–proposals built atop the Bitcoin blockchain.
The original Litecoin we started out with are now Rootstock Litecoin, which I can use for creating smart contracts and as previously mentioned Sidechains can exist for all types of digital assets with propositions of not only smart contracts but the ability to provide more freedom for experimentation with Beta releases of core software and Altcoins, as well as the taking over of traditional banking instruments such as the issuing and tracking of shares, bonds and other assets.
LeewayHertz provides end to end solution to build enterprise-grade blockchain applications.  Experienced in developing multiple blockchain applications for Global Supply Chain, Identity Solution on blockchain and utility bill generation using blockchain.  LeewayHertz has experience working with distributed ledger technology including Hyperledger, Ethereum, R3Corda, and Hashgraph. The team also includes Hedera Hashgraph ambassadors ... Read more
Send your Bitcoins to a specially formed Bitcoin address. The address is specially designed so that the coins will now be out of your control… and out of the control of anybody else either. They’re completely immobilized and can only be unlocked if somebody can prove they’re no longer being used elsewhere (I’ll explain what I mean by this in a minute).   In other words, you’ve used the core bitcoin transaction rules I described above to lay down a specific condition that the future owner – whoever it ends up being – needs to fulfil in order to take control
The first work on a cryptographically secured chain of blocks was described in 1991 by Stuart Haber and W. Scott Stornetta.[10][6] They wanted to implement a system where documents' timestamps could not be tampered with or backdated. In 1992, Bayer, Haber and Stornetta incorporated Merkle trees to the design, which improved its efficiency by allowing several documents to be collected into one block.[6][11]

Loom Network is a Platform as a Service built on top of Ethereum that allows developers to run large-scale decentralized applications. This lets developers build DApps with the trust and security of the world’s most secure public blockchain, along with the computing resources necessary to run commercial-scale services. Like how Filecoin tokenized disk space, Loom aims to be the tokenized application protocol of the new decentralized web.
Sometimes separate blocks can be produced concurrently, creating a temporary fork. In addition to a secure hash-based history, any blockchain has a specified algorithm for scoring different versions of the history so that one with a higher value can be selected over others. Blocks not selected for inclusion in the chain are called orphan blocks.[22] Peers supporting the database have different versions of the history from time to time. They keep only the highest-scoring version of the database known to them. Whenever a peer receives a higher-scoring version (usually the old version with a single new block added) they extend or overwrite their own database and retransmit the improvement to their peers. There is never an absolute guarantee that any particular entry will remain in the best version of the history forever. Because blockchains are typically built to add the score of new blocks onto old blocks and because there are incentives to work only on extending with new blocks rather than overwriting old blocks, the probability of an entry becoming superseded goes down exponentially[23] as more blocks are built on top of it, eventually becoming very low.[1][24]:ch. 08[25] For example, in a blockchain using the proof-of-work system, the chain with the most cumulative proof-of-work is always considered the valid one by the network. There are a number of methods that can be used to demonstrate a sufficient level of computation. Within a blockchain the computation is carried out redundantly rather than in the traditional segregated and parallel manner.[26]

Now, making experimental or rapid changes to Bitcoin is very risky and so change happens slowly. So if the one-size-fits-all architecture of Bitcoin doesn’t suit a particular use-case, you have a problem. You either have to use an entirely different cryptocurrency (or build one!). Or you have to use (or build) a centralized service, which brings new risks.
Developers and Cryptocurrency enthusiasts have been looking at expanding Bitcoins functionality as mainstream adoption increases. Side chains would increase the resilience of Bitcoin: If one of the sidechains was to be compromised, only the Bitcoins on that chain would be lost, while other sidechains and the Blockchain would continue like normal. This would further stabilize the Bitcoin network and increase security.
Let’s switch gears quickly before we get back to talking about trust mechanisms. We’ll define what a “smart contract” is. The first blockchain that was popularized is obviously the Bitcoin blockchain. But the functionality of Bitcoin is very limited. All it can do is record transaction information. It’s only useful to keep track of the fact that Alice sent Bob 1 Bitcoin.

Sidechain is a chain of blocks based on the main parental blockchain. Sidechains realize the new financial ecosystems via integration into Bitcoin. Relatively new to Bitcoin, the sidechain is an extension that enables the ability both to build a link between BTC and an altcoin and to create new independent services that work via the main Bitcoin blockchain. Using sidechains allows for the creation of various types of smart contracts, stocks, derivatives, etc. It is possible to develop a limitless number of Bitcoin or Ethereum-based sidechains with different tasks and features, assets of which will depend on the main blockchain’s volatility. It allows traditional blockchains to support several kinds of assets, payments, smart contracts and also to increase the level of security and anonymity of transactions.

Bitcoin and Ethereum blockchains use the ‘proof of work’ (POW) consensus algorithm to provide maximum security. It relies on a process called ‘mining’, which involves nodes trying to find the cryptographic hash of the last recorded block in order to create a new block. This is a massive number-crunching operation. It’s computing-power and energy-intensive, and becomes increasingly costly as the blockchain length grows. Read more about POW in this article “Proof of work vs proof of stake comparison”. This makes such blockchains impractical in a large business context.
@gendal I am discussing private chains with prospects, so my interest is not superficial and theoretical. I see the benefits for the organization in using the private chain as another form of internal database, with better security properties. It can also be used where a service bus product would be today, to facilitate integration, conformance, monitoring, audit. Private chain can also, via a two way peg, be connected to the main chain, achieving a form of public/private network divide that routers created for us in the early stages of the Internet development. Anything else on the benefits side that I missed?
– The manipulation of the blockchain: It is indeed possible to come back at any time on the transactions that have already been added to the blockchain and therefore change the balance of the members. In a public blockchain, such operation would require that 51% of the hashing power (i.e capacity to mine) is concentrated in the hands of the same entity. This not theory anymore since it happened beginning 2014 when the cooperative of GHash minor reached the 51% threshold.
Decentralization and distribution are seen by many to be a major benefit of public blockchains, but not everybody shares this ethos. But this is not the only benefit of public blockchains, of course. Perhaps most importantly, their transparency makes them very secure: because they can be audited by anybody, it is easy to detect fraud on the chain. Security-via-openness is a principle well known in the open source world, and this strategy is also popular among some in the digital currency community. For example, all of the tools and content produced by the Ethereum team is open source. This helps to make Ethereum widely accessible and more secure.
Sidechains solve a lot of problems, but at what cost? The introduction of sidechains makes things even more complex and much harder to understand for those who are not actively involved in the blockchain space. This also divides assets, no more “one chain, one asset” adage, which further complicates things. And on a network level there are multiple independent unsynchronised blockchains interacting with each other.
“Amit Goel is the Founder & Chief Strategy & Innovation Officer for MEDICI. Amit’s vision is to build a strong FinTech market network that involves financial institutions, banks, startups, investors, analysts & other key stakeholders across the ecosystem – helping each one of them in a meaningful way by removing the asymmetry of information and providing a platform to engage & transact.\ \ Amit is passionate about bringing actionable FinTech-focused insights, innovative products & services for the FinTech ecosystem. Some of his work involves startup scores, bank scores/assessments, predictive viewpoints & other innovations that have helped MEDICI’s customers and the ecosystem. He has been named amongst the Top 100 FinTech thought leaders/influencers in the world & Top 10 in Asia multiple times by reputed agencies, consulting firms as well as financial institutions. Amit has built MEDICI (formerly LTP) as a new-age, tech-enabled advisory/research firm, which is now considered the #1 global research & innovation platform for FinTech in the world.\ \ Amit has been writing pioneering viewpoints on financial technology space that have been ahead of the curve since 2010. His data-driven predictions have helped the customers as well as the ecosystem. His past work experience includes a strong background in strategy & market analysis and advisory to clients (from big business houses to Fortune 500 firms) in payments, commerce, financial services & IT/technology. In the past, Amit had also founded a successful consulting & research practice called GrowthPraxis and has worked at Boston Analytics, Frost & Sullivan, and Daimler Chrysler in strategy & research.”
The witnesses who put more funds in escrow have a greater chance of mining (or minting) the next block. The incentives line up nicely here. There are only a few witnesses and they get paid to be witnesses, so they are incentivized to not cheat. If they do cheat and get caught, they not only get voted out in favor of the next eagerly awaiting witness, they lose all the funds they had in escrow.
In this article, I will intent to do a public vs private (permissioned) blockchain comparison. This will include an examination of what exactly the roles of these two types of blockchain really are and why big businesses should quickly move to adopt them. This analysis will look at why private blockchains are better suited to big business use when compared to public ones.

There has been tremendous interest in blockchain, the technology on which Bitcoin functions. Nakamoto developed the blockchain as an acceptable solution to the game theory puzzle – Byzantine General’s Problem. This lead to a number of firms adopting the technology in different ways to solve real world issues, wherever there was an element of trust involved. Majority of them could be relating to the ability to provide proof of ownership – for documents, software modules/licenses, voting etc.
What if we could run heavy computations in a more centralized fashion, say on a single server, and then periodically integrate the results onto the main blockchain for posterity. We temporarily expose some vulnerability while the parallel server runs the heavy computation, but we get a massive benefit in that we don’t have to run the computation on chain, and simply need to store the results for future verification. This is the general premise behind Truebit. We won’t get into all the details of Truebit but there is a concept of challengers, who check to see the computations that were made have high fidelity.
Nikolai Hampton pointed out in Computerworld that "There is also no need for a '51 percent' attack on a private blockchain, as the private blockchain (most likely) already controls 100 percent of all block creation resources. If you could attack or damage the blockchain creation tools on a private corporate server, you could effectively control 100 percent of their network and alter transactions however you wished."[9] This has a set of particularly profound adverse implications during a financial crisis or debt crisis like the financial crisis of 2007–08, where politically powerful actors may make decisions that favor some groups at the expense of others,[51][52] and "the bitcoin blockchain is protected by the massive group mining effort. It's unlikely that any private blockchain will try to protect records using gigawatts of computing power—it's time consuming and expensive."[9] He also said, "Within a private blockchain there is also no 'race'; there's no incentive to use more power or discover blocks faster than competitors. This means that many in-house blockchain solutions will be nothing more than cumbersome databases."[9]
@gendal I am discussing private chains with prospects, so my interest is not superficial and theoretical. I see the benefits for the organization in using the private chain as another form of internal database, with better security properties. It can also be used where a service bus product would be today, to facilitate integration, conformance, monitoring, audit. Private chain can also, via a two way peg, be connected to the main chain, achieving a form of public/private network divide that routers created for us in the early stages of the Internet development. Anything else on the benefits side that I missed?
For example, let’s say we have side chain 1 (SC1) and side chain 2 (SC2). A transaction occurs on SC1. A node in SC1 broadcasts the transaction to nodes in the main chain to record this transaction. The same node of SC1 calls a function from SC2 with a proof. The function in the nodes of SC2 verifies the proof on the main chain. The function gets executed.

Plasma, a project by Ethereum, uses this side chain concept. It encourages transactions to happen on side chains (or child chains). An authority governs each of the child chains. If the authority starts acting maliciously, anyone on the child chain can quit the child chain and take back their pegged assets on the main chain. It’s in its early stages of development but shows a lot of promise in handling some of Ethereum’s scalability issues.
Sidechains are blockchains that allow for digital assets from one blockchain to be used securely in a separate blockchain and subsequently returned to the original chain. The term “sidechain” in this case is used for context, in that the paper initially refers to Bitcoin as the “parent chain” and connected blockchains (altcoins) as “sidechains,” but the term is interchangeable so that altcoins interacting with each other can each be a parent chain interacting with sidechains. You may have also heard of “childchains,” which are also sidechains.
Forbes reports that blockchain and biometric eyeball scanning technologies underpin the systems that support food distribution in the Syrian refugee crisis. While there are many further uses of blockchain, at the core of its business functionality is the creation of transparent, stacking “ledgers” of information. This is where private blockchain can prove extremely useful.
When blockchain technology was introduced to the public in 2008 (via Satoshi Nakamoto’s famous white paper), it would have been hard to predict that private or consortium blockchains would become popular. But recently, there’s been a lot of buzz about this in the digital currency community. Many companies are beginning to experiment with blockchain by implementing private and consortium chains, although some people are critical of this. This discussion not only centers on use cases and benefits, but whether non-public blockchains are an appropriate application of the protocol to begin with.