Many people believe this is the future of the blockchain. It maintains network security and allows for scalability. The biggest criticism is that it heavily favors those with more funds as smaller holders have no chance of becoming witnesses. But the reality is, smaller players have no hope of participating in Proof of Work either, as mining from your own laptop at home is no longer a reality. Smaller players get outcompeted by bigger players who have massive mining rigs. STEEM and EOS are examples of DPOS blockchains. Even Ethereum is moving to POS with its Casper project.

Security issues. Like the blockchain, the sidechain needs the work of miners to stay safe from attacks. Without sufficient power, the sidechain is vulnerable for assault. If hacked, only the sidechain will be damaged, while the main chain remains untouched and ready to continue work. If the main chain comes under the attack, the sidechain still operates, but without the value of the peg.


A user on the parent chain first has to send their coins to an output address, where the coins become locked so the user is unable to spend them elsewhere. Once the transaction has been completed, a confirmation is communicated across the chains followed by a waiting period for extra security. After the waiting period, the equivalent number of coins is released on the sidechain, allowing the user to access and spend them there. The reverse happens when moving back from a sidechain to the main chain.
The words block and chain were used separately in Satoshi Nakamoto's original paper, but were eventually popularized as a single word, blockchain, by 2016. The term blockchain 2.0 refers to new applications of the distributed blockchain database, first emerging in 2014.[13] The Economist described one implementation of this second-generation programmable blockchain as coming with "a programming language that allows users to write more sophisticated smart contracts, thus creating invoices that pay themselves when a shipment arrives or share certificates which automatically send their owners dividends if profits reach a certain level."[1]

The consensus mechanism is centralized in the hands of a single entity which mission is to verify and add all transactions to the blockchain. A network based on a private blockchain, therefore does not need to use a mechanism such as “Proof of Work” or “Proof of Stake” which are complicated to implement and expensive. The problems of security being much more simple in the case of private blockchains, it is possible to apply the mechanisms of consensus lighter, more effective and therefore easy to deploy such that the BFT.
The distributed Bitcoin mining network performs quadrillions of calculations every second that maintain the integrity of its blockchain. Other blockchains aren’t remotely as secure, but they innovate much faster. Sidechains, an innovation proposed and developed by the startup Blockstream, allow for the best of both worlds; the creation of new blockchains “pegged” to Bitcoin, so that value can be transferred between them, which can conceivably be automatically secured by Bitcoin miners via “merged mining.”
Focaloid is a digital solutions providing company that focuses on developing value-adding technology solutions with user-engaging designs. Broadly, our services include Enterprise, Mobile & Web Platform Solutions, Design and Animation Solutions.  We engage in creating customer-centric applications on multiple platforms in mobile and web. Our web and mobile application development span across platforms such as Android, iOS, Java, Ruby ... Read more

Thus Tradle set out to build a meta-protocol that saves the data in the overlay network, and only puts minimal referencing data on the blockchain. There is a general grumpy consensus among bitcoin core devs and mining pool operators on allowing one small data chunk, a hash, per transaction. Many devs say it is not possible to secure this second overlay network. I agree, unless we use the blockchain to help with the task. We have a partial solution working, and are preparing a new design to improve it (partial, as it can not yet handle all known attacks). We are actively sharing the designs at various meetups (and on the github) and are inviting devs to find attack vectors and propose solutions. Tradle’s protocol not only relieves the pressure on bitcoin’s blockchain but is also able to handle larger transaction sizes than Counterparty and Mastercoin, so it can be used for complex identity, supply chain management and many other applications. It is also capable of handling attachment files, needed in the healthcare and financial industries.
RSK is the first open-source smart contract platform with a 2-way peg to Bitcoin that also rewards the Bitcoin miners via merge-mining, allowing them to actively participate in the Smart Contract revolution. RSK goal is to add value and functionality to the Bitcoin ecosystem by enabling smart-contracts, near instant payments and higher-scalability.
Every node in a decentralized system has a copy of the blockchain. Data quality is maintained by massive database replication[8] and computational trust. No centralized "official" copy exists and no user is "trusted" more than any other.[4] Transactions are broadcast to the network using software. Messages are delivered on a best-effort basis. Mining nodes validate transactions,[22] add them to the block they are building, and then broadcast the completed block to other nodes.[24]:ch. 08 Blockchains use various time-stamping schemes, such as proof-of-work, to serialize changes.[34] Alternative consensus methods include proof-of-stake.[22] Growth of a decentralized blockchain is accompanied by the risk of centralization because the computer resources required to process larger amounts of data become more expensive.[35]
There are promising works in sidechains like there can be transactions at higher speed and volume. For example micropayments can be done directly with minimal fee by using Lightning Network side chain. You won't have to wait for 10 minutes for miners to create a block. Or we can have privacy in our transactions by Zerocash side chain. If you want privacy, you send your bitcoin to sidechain and use Zerocash protocol for sending bitcoin to your recipient. This protocol makes your transaction not to be seen in the transaction history, at the same time it won't damage the integrity and security of the Bitcoin. If you use Zerocash protocol in your sidechain, you cannot be tracked anymore. By the way, test results say that its performance is very poor now, but I believe it will be better in the near future.
These in-channel payments would be instant, unlike current Bitcoin payments, which require an hour to be fully verified on the blockchain. What’s more, payments would be routable across multi-hop paths, like packets across the Internet — so instead of having to create a channel to every new counterparty, you could maintain a few channels to a small number of well-connected secure intermediaries and send/receive money through them.
A side-chain is a separate block-chain that runs parallel to the main chain, for example the Bitcoin network, and is attached to the main chain through a simple two-way peg, or special 'address'. A user sends coins to this special address and this amount is effectively 'locked' out from use on the main chain and available on the side chain. This currency is released back to the main chain once its been proven that the side chain is no longer using it.
Looking for a top private blockchain open source? Here is a list of private blockchain development companies with client reviews and ratings. Private blockchain network on contrary to public and permission blockchain can be run and utilized by one organization only. Additionally, private blockchain platform organizes distinctive components of the technology in order to serve different applications. By prioritizing productivity over the secrecy, permanence, and transparency, private blockchain open source adheres to the qualities normally connected with the technology. The scope of uses for private blockchain might be narrow yet its power to enhance processes are no less important. GoodFirms has thus created a list of top private blockchain companies below:
That is however not all. Sidechains also have some specific use cases, unique to a certain blockchain. One example is the usage of sidechains in EOS. EOS is currently facing a RAM problem. RAM is too expensive and developers are complaining. Sidechains could compete with the EOS mainchain by having lower RAM prices, this would lead to competition, incentivizing both the EOS mainchain block producers and sidechain block producers (mainchain and sidechains of EOS are maintained by the same group of block producers) to keep the RAM price as low as possible. This also means there is more RAM available, so the RAM price will go down as a result.
Step back from the details for moment and consider what’s been described.  We now have a way to move coins from Bitcoin onto another platform (a sidechain) and move them back again.   That’s pretty much what we do when we move them to a wallet platform or an exchange.  The difference is that the “platform” they’ve been moved to is also a blockchain… so it has the possibility of decentralised security, visibility and to gain from other innovation in this space.
A side-chain is a separate block-chain that runs parallel to the main chain, for example the Bitcoin network, and is attached to the main chain through a simple two-way peg, or special 'address'. A user sends coins to this special address and this amount is effectively 'locked' out from use on the main chain and available on the side chain. This currency is released back to the main chain once its been proven that the side chain is no longer using it.
Blockstream has also released an “Alpha” sidechain with all of those features up and running except the last, coupled to the Bitcoin testnet. (Used for testing Bitcoin software without putting real value at risk.) In the absence of the Bitcoin protocol change that will cryptographically secure the programmatic transfer of value between Bitcoin and sidechains, they’re cooperating with several external organizations to perform and validate those transfers. If and when that protocol change happens, though, pegged sidechains will be as permissionless, and as decentralized, as Bitcoin itself.
Las sidechains son otro de los conceptos más famosos entorno a Bitcoin, no los pierdas de vista. La teoría indica que permitirían añadir funcionalidades nuevas a Bitcoin, pero sin necesidad de modificar constantemente el código de éste, ya que la funcionalidad es desarrollada utilizando otra cadena de bloque para finalmente ser conectada a la de Bitcoin. Al mismo tiempo esto evitaría la saturación de una sola cadena de bloques, como actualmente ocurre, al utilizar cadenas diferentes para cada caso de uso.

Further, despite sidechains being independent of each other, they are responsible for their individual security and need the requisite mining power to remain secure. Bitcoin’s blockchain has sufficient PoW mining power to remain secure even from the most coordinated of attacks, but many more nascent sidechains lack the necessary network effects and mining power to guarantee security to users.
Blockchains that are private or permissioned work similarly to public blockchains but with access controls that restrict those that can join the network, meaning it operates like a centralised database system of today that limits access to certain users. Private Blockchains have one or multiple entities that control the network, leading to the reliance on third-parties to transact. A well-known example would be Hyperledger.
×