Private and Public Blockchain occurs when the financial enterprises start to explore the various blocks of the Blockchain technology. These two Blockchains are coming up with business oriented models as to obtain the difference between the two. The private blockchain generates at a lower cost and faster speed than the public blockchain. In the previous years, the blockchain has grown to become an interesting subject globally. It is becoming an integrated part in the financial sectors all over the digital world.
NPD said the next step for retailers is to develop their own cryptocurrency to prevent customers from having to use credit cards when shopping online. NPD said the practice makes sense for the retailer, because if the customer could send the payment transfer via blockchain, it would avoid third-party clearing house fees retailers pay for processing card payments.
Sometimes separate blocks can be produced concurrently, creating a temporary fork. In addition to a secure hash-based history, any blockchain has a specified algorithm for scoring different versions of the history so that one with a higher value can be selected over others. Blocks not selected for inclusion in the chain are called orphan blocks.[22] Peers supporting the database have different versions of the history from time to time. They keep only the highest-scoring version of the database known to them. Whenever a peer receives a higher-scoring version (usually the old version with a single new block added) they extend or overwrite their own database and retransmit the improvement to their peers. There is never an absolute guarantee that any particular entry will remain in the best version of the history forever. Because blockchains are typically built to add the score of new blocks onto old blocks and because there are incentives to work only on extending with new blocks rather than overwriting old blocks, the probability of an entry becoming superseded goes down exponentially[23] as more blocks are built on top of it, eventually becoming very low.[1][24]:ch. 08[25] For example, in a blockchain using the proof-of-work system, the chain with the most cumulative proof-of-work is always considered the valid one by the network. There are a number of methods that can be used to demonstrate a sufficient level of computation. Within a blockchain the computation is carried out redundantly rather than in the traditional segregated and parallel manner.[26]
Over the last year the concept of “private blockchains” has become very popular in the broader blockchain technology discussion. Essentially, instead of having a fully public and uncontrolled network and state machine secured by cryptoeconomics (eg. proof of work, proof of stake), it is also possible to create a system where access permissions are more tightly controlled, with rights to modify or even read the blockchain state restricted to a few users, while still maintaining many kinds of partial guarantees of authenticity and decentralization that blockchains provide. Such systems have been a primary focus of interest from financial institutions, and have in part led to a backlash from those who see such developments as either compromising the whole point of decentralization or being a desperate act of dinosaurish middlemen trying to stay relevant (or simply committing the crime of using a blockchain other than Bitcoin). However, for those who are in this fight simply because they want to figure out how to best serve humanity, or even pursue the more modest goal of serving their customers, what are the practical differences between the two styles?
Developers and Cryptocurrency enthusiasts have been looking at expanding Bitcoins functionality as mainstream adoption increases. Side chains would increase the resilience of Bitcoin: If one of the sidechains was to be compromised, only the Bitcoins on that chain would be lost, while other sidechains and the Blockchain would continue like normal. This would further stabilize the Bitcoin network and increase security.
Parangat Technologies stands tall amongst mobile app development giants. Parangat team of top iPad developers pays special attention to communication and requirement analysis in order to understand project complexity which leads to the foundation of a great application/game and helps in creating long term value for the iPad app user as well as our clients. It has the satisfaction of being one of the leading names in enterprise-level apps devel ... Read more
In general, so far there has been little emphasis on the distinction between consortium blockchains and fully private blockchains, although it is important: the former provides a hybrid between the “low-trust” provided by public blockchains and the “single highly-trusted entity” model of private blockchains, whereas the latter can be more accurately described as a traditional centralized system with a degree of cryptographic auditability attached. However, to some degree there is good reason for the focus on consortium over private: the fundamental value of blockchains in a fully private context, aside from the replicated state machine functionality, is cryptographic authentication, and there is no reason to believe that the optimal format of such authentication provision should consist of a series of hash-linked data packets containing Merkle tree roots; generalized zero knowledge proof technology provides a much broader array of exciting possibilities about the kinds of cryptographic assurances that applications can provide their users. In general, I would even argue that generalized zero-knowledge-proofs are, in the corporate financial world, greatly underhyped compared to private blockchains.
Ethereum, a provider of decentralized platform and programming language that helps running smart contracts and allows developers to publish distributed applications. Factom, a provider of records management, record business process for business and governments. Blockstream, a provider of sidechain technology, focused on extending capabilities of Bitcoin. The company has started experimenting on providing accounting (considered a function to be done on private blockchain) with the use of public blockchain technology.
Sidechain transactions using a two-way peg effectively only allow for intra-chain transactions. A transfer from Bitcoin (parent chain) to Ethereum (sidechain) would allow a user to use the functionality of Ethereum (i.e., fully expressive smart contracts), but the underlying original asset would remain precisely that, Bitcoin. So, a Bitcoin on an Ethereum sidechain technically remains a Bitcoin.
Sidechains as an idea have existed and had been floating around for quite some time now, the bases is to extend the decentralization of trust into other sectors and to other digital assets. However, while this all sounds great it's a perfect example of good in theory but not so much in practice. Nevertheless, this hasn't stopped people from trying with groups such as Blockstream exploring the idea and our friends over at Rootstock co-creating a Sidechain which is allowing Litecoin and Bitcoin to execute smart contracts and all without changing the core software of the original currency.
They rely on a technology called SPV (simplified payment verification) proofs, which work like this: in order to send money to a sidechain and back to the main bitcoin network again, users need to attach a proof that they really have the funds. Without these proofs, when users or miners move their money back to the main chain, under certain conditions, they could take more money than they really have.
It might seem that this technology is beneficial for any business, but it is not. Quite often projects fail to justify their will of public or private blockchain implementation. The key reason to use blockchain is the inefficiency of existing centralized solution that is slow, expensive, and lacks transparency and reliability. In other cases, blockchain isn’t required.
A consortium blockchain is often said to be semi-decentralized. It, too, is permissioned but instead of a single organization controlling it, a number of companies might each operate a node on such a network. The administrators of a consortium chain restrict users' reading rights as they see fit and only allow a limited set of trusted nodes to execute a consensus protocol.
These kinds of blockchains are forks of the original implementations but deployed in a permissioned manner. Mainly hyped because the companies behind these chains want to onboard corporations in order to generate buzz around their their chain. It’s tolerable for proof of concepts or if they plan to move to public as soon as possible; otherwise they are just using the wrong set of tools for the job.

Public blockchains are open, and therefore are likely to be used by very many entities and gain some network effects. To give a particular example, consider the case of domain name escrow. Currently, if A wants to sell a domain to B, there is the standard counterparty risk problem that needs to be resolved: if A sends first, B may not send the money, and if B sends first then A might not send the domain. To solve this problem, we have centralized escrow intermediaries, but these charge fees of three to six percent. However, if we have a domain name system on a blockchain, and a currency on the same blockchain, then we can cut costs to near-zero with a smart contract: A can send the domain to a program which immediately sends it to the first person to send the program money, and the program is trusted because it runs on a public blockchain. Note that in order for this to work efficiently, two completely heterogeneous asset classes from completely different industries must be on the same database - not a situation which can easily happen with private ledgers. Another similar example in this category is land registries and title insurance, although it is important to note that another route to interoperability is to have a private chain that the public chain can verify, btcrelay-style, and perform transactions cross-chain.
Ardor is a blockchain platform predicated on childchains (sidechains) that use proof of stake (PoS) consensus. It uses the primary chain as a security chain and the childchains for processing transactions to increase scalability. Their design is specifically focused on speed and efficiency through PoS consensus and removing blockchain bloat through pruning.
“Not only is decentralization, open protocols, open source, collaborative development and living in the wild a feature of Bitcoin, that’s the whole point. And if you take a permissioned ledger and say, that’s all nice, we like the database part of it, can we have it without the open decentralized P2P [peer-to-peer] open source non-controlled distributed nature of it, well you just threw out the baby with the bathwater.” 
What is the difference between a public blockchain and a private blockchain? Does it matter? Which is better? Gallactic believes that currently there are pros and cons between both Private and Public Blockchains, but time and “convergence”, a term that is gaining prominence in the Blockchain Industry, is clearly showing that the lines between these categories, once clear, are starting to fade.