Another promise of sidechains is the ability to have a stronger and faster mainchain, as transactions can happen on one of the sidechains. If users or developers are dissatisfied with the costs of sending a transaction and the transaction speed of the mainchain, they can use and or deploy their dapp on one of the sidechains. This leads to a more diversified network and a stronger, faster and more robust mainchain.
Another promise of sidechains is the ability to have a stronger and faster mainchain, as transactions can happen on one of the sidechains. If users or developers are dissatisfied with the costs of sending a transaction and the transaction speed of the mainchain, they can use and or deploy their dapp on one of the sidechains. This leads to a more diversified network and a stronger, faster and more robust mainchain.
The consensus mechanism is centralized in the hands of a single entity which mission is to verify and add all transactions to the blockchain. A network based on a private blockchain, therefore does not need to use a mechanism such as “Proof of Work” or “Proof of Stake” which are complicated to implement and expensive. The problems of security being much more simple in the case of private blockchains, it is possible to apply the mechanisms of consensus lighter, more effective and therefore easy to deploy such that the BFT.

A consortium blockchain is part public, part private. This split works at the level of the consensus process: on a consortium chain, a pre-selected group of nodes control the consensus process, but other nodes may be allowed to participate in creating new transactions and/or reviewing it. The specific configuration of each consortium chain (i.e., which nodes have the power to authorize transactions via the consensus process, which can review the history of the chain, which can create new transactions, and more) is the decision of each individual consortium.
The first question to answer is “What is public blockchain?” The very name of this type of networks implies that they are open and permissionless. It means that anyone in the world can join the network, add blocks and view the information stored there. Indeed, public blockchains are totally transparent as any of their members can audit them. For this reason, independent participants can easily agree on transactions without middlemen and the fear of deception.
Saying that, Interoperability has been the missing link in conquering the obstacles faced by both private and public blockchains by empowering them to interact and exchange values across platforms seamlessly. Developers use of the Gallactic blockchain technology, that allow for private and public blockchains within its eco-system, will drive the potential to combine both public and private blockchains with innovative new solutions, designed to accomplish cross-chain exchange and greater compatibility is the way forward for all parties and their concerns.
The idea emerged that the Bitcoin blockchain could be in fact used for any kind of value transaction or any kind of agreement such as P2P insurance, P2P energy trading, P2P ride sharing, etc. Colored Coins and Mastercoin tried to solve that problem based on the Bitcoin Blockchain Protocol. The Ethereum project decided to create their own blockchain, with very different properties than Bitcoin, decoupling the smart contract layer from the core blockchain protocol, offering a radical new way to create online markets and programmable transactions known as Smart Contracts.
Sidechains as an idea have existed and had been floating around for quite some time now, the bases is to extend the decentralization of trust into other sectors and to other digital assets. However, while this all sounds great it's a perfect example of good in theory but not so much in practice. Nevertheless, this hasn't stopped people from trying with groups such as Blockstream exploring the idea and our friends over at Rootstock co-creating a Sidechain which is allowing Litecoin and Bitcoin to execute smart contracts and all without changing the core software of the original currency.
“We believe that public blockchains with censorship resistance have the potential to disrupt society, when private blockchains are merely a cost-efficiency tool for banking back offices. One can measure its potential in trillions of dollars, the other in billions. But as they are totally orthogonal, both can coexist in the same time, and therefore there is no need to oppose them as we can often see it.” 
Transparency does not, however, mean that public blockchains are completely unhackable. Any time data enters a digital network, it is subject to security breaches and unethical uses. Although public blockchains looks to be highly secure right now, there are always going to be bad actors interested in exploiting weaknesses in the system. This is often through hacking methods that are difficult to predict and account for — so claims of one-hundred-percent security in any technology should always be read with a critical eye
Structure Side chains are independent blockchains that have a kind of "pegging mechanism", where at least one of the chains (main chain and side chain) is "aware" of the other chain and both tokens are pegged at a set ratio. Side chains need their own network security and block processing. "Child Chains" of the Ardor platform are tightly integrated into the main Ardor parent chain. All transactions are processed and secured by the parent chain forgers. This makes cross-chain transactions possible. Pruning will be enabled on child chain transactions in order to significantly reduce blockchain bloat by pruning the transactions on regular basis from the blockchain.
Thus Tradle set out to build a meta-protocol that saves the data in the overlay network, and only puts minimal referencing data on the blockchain. There is a general grumpy consensus among bitcoin core devs and mining pool operators on allowing one small data chunk, a hash, per transaction. Many devs say it is not possible to secure this second overlay network. I agree, unless we use the blockchain to help with the task. We have a partial solution working, and are preparing a new design to improve it (partial, as it can not yet handle all known attacks). We are actively sharing the designs at various meetups (and on the github) and are inviting devs to find attack vectors and propose solutions. Tradle’s protocol not only relieves the pressure on bitcoin’s blockchain but is also able to handle larger transaction sizes than Counterparty and Mastercoin, so it can be used for complex identity, supply chain management and many other applications. It is also capable of handling attachment files, needed in the healthcare and financial industries.
And now for the second clever part. The logic above is symmetric. So, at any point, whoever is holding these coins on the sidechain can send them back to the Bitcoin network by creating a special transaction on the sidechain that immobilises the bitcoins on the sidechain. They’ll disappear from the sidechain and become available again on the Bitcoin network, under the control of whoever last owned them on the sidechain.
By design, a blockchain is resistant to modification of the data. It is "an open, distributed ledger that can record transactions between two parties efficiently and in a verifiable and permanent way".[7] For use as a distributed ledger, a blockchain is typically managed by a peer-to-peer network collectively adhering to a protocol for inter-node communication and validating new blocks. Once recorded, the data in any given block cannot be altered retroactively without alteration of all subsequent blocks, which requires consensus of the network majority. Although blockchain records are not unalterable, blockchains may be considered secure by design and exemplify a distributed computing system with high Byzantine fault tolerance. Decentralized consensus has therefore been claimed with a blockchain.[8]
The Bitcoin Blockchain is a game changer, because it is public and permissionless. Anyone in the world can download the open source code, and can start verifying transaction, being rewarded with bitcoin, through a concept called mining. All stakeholders in the bitcoin network, who do not know and trust each other, are coordinated through an economical incentive framework pre-defined in the protocol and auto enforced by machine consensus of the P2P Network. The smart contract in the blockchain protocol therefore  provides an coordination framework for all network participants, without the use of traditional legal contracts. In private and permissioned blockchain, all network participants validating transactions are known. Bilateral or multilateral legal agreements provide a framework for trust, not the code.
These in-channel payments would be instant, unlike current Bitcoin payments, which require an hour to be fully verified on the blockchain. What’s more, payments would be routable across multi-hop paths, like packets across the Internet — so instead of having to create a channel to every new counterparty, you could maintain a few channels to a small number of well-connected secure intermediaries and send/receive money through them.

The great thing about Bitcoin, for a tech columnist like me, is that it’s simultaneously over-the-top cinematic and technically dense. Richard Branson recently hosted a “Blockchain Summit” at his private Caribbean island. There’s a Bitcoin Jet. At the same time, 2015 has seen the release of a whole slew of technically gnarly–and technically fascinating–proposals built atop the Bitcoin blockchain.

The consensus mechanism is centralized in the hands of a single entity which mission is to verify and add all transactions to the blockchain. A network based on a private blockchain, therefore does not need to use a mechanism such as “Proof of Work” or “Proof of Stake” which are complicated to implement and expensive. The problems of security being much more simple in the case of private blockchains, it is possible to apply the mechanisms of consensus lighter, more effective and therefore easy to deploy such that the BFT.
Unfortunately our second option cannot be done yet, because to use these sidechains, main chain (here it is bitcoin) needs to do some upgrade (soft fork). By the way, upgrades in public blockchains are very painful yet. There will be a user activated soft fork (UASF) on August 1. All bitcoin forms’ trend topic is this soft fork which is about a code change for Segregated Witness Adoption.
What Bitcoin’s development team is essentially doing through feature-creep is forcing everyone in the non-tech world to use Bitcoin through commercial proxies to avoid all this complexity (crypto-what? security? sidechain?), which effectively results in the loss of security, relative anonymity and decentralized properties that helped to make it interesting in the first place.
Sidechains are an essential innovation in the blockchain field with some interesting long-term implications and effects on the broader interoperability and scalability of blockchain networks. They are effectively extensions of existing blockchains that increase their functionality and allow for validation of data from other blockchains and for assets to be seamlessly transferred between them.
The good thing about sidechains is that they are independent of their main chain. Sidechains take care of their own security. Problems occurring on the sidechain can, therefore, be controlled without affecting the main chain. Likewise, a security problem on the main chain does not affect the sidechain although the value of the peg is greatly reduced.
Private blockchains, or as I like to call them, shared databases, have a place in improving efficiency for financial institution for back-office settlement processes. They should not be seen as controversial, or part of some dialectic struggle between punks and police. To the extent that the identifying shroud of AML/KYC can be placed into public blockchain metadata (possible in Omni Layer transactions over the Bitcoin blockchain) there may even be interoperability between these two sides of the train tracks. Right now, due to state-granted monopolies to issue credit, most of the world's liquidity is still in banks. However, we believe that in the long-term, public blockchains, especially those based on work, will come to take a more significant part in the ‘System D’ informal economy, which is where most of the global economic growth will originate.” 
×