So, there is a kind of centralized authority that decides who has a right to contribute to and to audit the network. What is more – it’s possible to restrict viewing information stored on private blockchains. It might seem that in such conditions, a blockchain is no longer the blockchain as it lacks transparency and decentralization. Well, these remarks are fair, but only when the network is estimated from the outside. Within it, the rules remain the same as for public networks: it is still transparent for all the members.
In September 2015, the first peer-reviewed academic journal dedicated to cryptocurrency and blockchain technology research, Ledger, was announced. The inaugural issue was published in December 2016.[91] The journal covers aspects of mathematics, computer science, engineering, law, economics and philosophy that relate to cryptocurrencies such as bitcoin.[92][93]
Instant Payments: Since the creation of Bitcoin there has been a race for faster transaction confirmations. Instant payments allow new use cases, such as retail store payments, and transactions in online games. RSK carefully chosen parameters and new theoretical protocols (such as DECOR+GHOST) allow creating blocks at 10 seconds average interval, with low stale block rate, and no additional centralization incentives.
In order to spend them, you have to prove you’re entitled to do so. And you do that by providing the solution to a challenge that was laid down when they were sent to you in the first place. This challenge is usually just: “prove to the world that you know the public key that corresponds to a particular Bitcoin address and are in possession of the corresponding private key”. But it can be more sophisticated than that.
Let’s switch gears quickly before we get back to talking about trust mechanisms. We’ll define what a “smart contract” is. The first blockchain that was popularized is obviously the Bitcoin blockchain. But the functionality of Bitcoin is very limited. All it can do is record transaction information. It’s only useful to keep track of the fact that Alice sent Bob 1 Bitcoin.
Unlike the other two-way peg mechanisms discussed in this article, SPV sidechains do not give direct control of real bitcoins on the main chain to a custodian; however, the ability for a majority of miners to produce and build upon fraudulent SPV proofs gives them indirect control over the funds, including the ability to send to themselves. Having said that, there are ways to mitigate this issue.
However, even this would have its own separate value and wouldn't necessarily solve any issue especially if a market is deemed to be, well, worthless. The two-way peg isn't perfect however. Especially since SPV can theoretically be tricked into crediting more coins than were originally deposited. If the attack will then transfer those coins back onto the parent it would take coins from another user on the Sidechain to fund the imbalance. And in the process create a permanent dissilience between the two chains. In order to strengthen the security of a Sidechain beyond just SPV, it would require the parent to soft fork and upgrade its core wallet software so that both chains can then validate transfers between them.

Because decentralization has been viewed by many as intrinsic to the revolutionary potential of blockchain, the point of private blockchains might be called into question. However, blockchains offer much more than a structure that accommodates decentralization. Among other features, their strong cryptography and auditability offers them more security than traditional protocols (although not bulletproof, as noted), and they allow for the development of new cryptocurrencies. Furthermore, voting platforms, accounting systems, and any type of data archive can arguably be optimized with blockchain technology. We are still in the early days of blockchain technology, and the power it has to reshape older systems has yet to be seen.

Sidechains solve a lot of problems, but at what cost? The introduction of sidechains makes things even more complex and much harder to understand for those who are not actively involved in the blockchain space. This also divides assets, no more “one chain, one asset” adage, which further complicates things. And on a network level there are multiple independent unsynchronised blockchains interacting with each other.

Note: This is also a pioneering effort towards increased adoption of smart contracts because while the traditional contracts have been around for a long time, smart contracts are relatively new, and there are gaps in how they are structured. If the smart contracts have the necessary legal expressions then that could serve as a template to bridge this gap in future.
By the end of this post, you’ll be able to freely participate in conversations like the above. This is not a coding tutorial, as we’ll just be presenting important concepts at a high level. However, we may follow up with programming tutorials on these ideas. This article will be helpful to both programmers and non-programmers alike. Let’s get going!
This segment is where we have seen the most rapid metamorphosis in the past year, mostly in financial services. These solutions are industry-specific, and they are based on private blockchain or ledger infrastructures. A caveat here is that some of these are not full blockchains. Rather, they are distributed ledgers, which are a subset of blockchain capabilities. And some don’t even include a consensus element, which takes the implementation another level down from distributed ledger tech.
Por ello, con este escenario sobre la mesa y con el objetivo de aunar esfuerzos, algunos se han preguntado: ¿Sería posible crear blockchains que sean utilizadas para casos de usos concretos, pero conectadas en todo momento a la de Bitcoin? ¿Podemos crear piezas de software que desde una blockchain se pueda saltar a otra de manera transparente, segura y descentralizada? Esto generaría, para que te hagas una imagen mental, algo así como las ruedas dentadas interconectadas de un motor, cada rueda una blockchain, todas trabajando juntas.
Private institutions like banks realized that they could use the core idea of blockchain as a distributed ledger technology (DLT), and create a permissioned blockchain (private or federated), where the validator is a member of a consortium or separate legal entities of the same organization. The term blockchain in the context of permissioned private ledger is highly controversial and disputed. This is why the term distributed ledger technologies emerged as a more general term.
Third option is to write your own blockchain protocol according to your needs. You will be able to answer all your what if questions if you design it by yourself. Ripple, Hyperledger projects (Fabric, Burrow, Indy), Corda, Multichain and most flexible and popular one Ethereum can be examples of that option. That option is the most costly and risky one. You have to invest a lot, and after you create your blockchain, you have to find people & companies to use it. Also you need to attract community of developers to upgrade, enhance your blockchain for coming requirements in the future. Above blockchains are the ones I remember immediately, also there are others.
AppTrait Solutions, are not just a mobile app development company but a full-fledged network in itself that is well-versed with the latest market trends and technological advancements. We are also a home to skilled techs that connect with customers and their businesses like you to make change happen. We offer all latest solutions in terms of mobile application development. Our team is well-versed in iOS and Android operating systems and ... Read more
LeewayHertz provides end to end solution to build enterprise-grade blockchain applications.  Experienced in developing multiple blockchain applications for Global Supply Chain, Identity Solution on blockchain and utility bill generation using blockchain.  LeewayHertz has experience working with distributed ledger technology including Hyperledger, Ethereum, R3Corda, and Hashgraph. The team also includes Hedera Hashgraph ambassadors ... Read more
There are promising works in sidechains like there can be transactions at higher speed and volume. For example micropayments can be done directly with minimal fee by using Lightning Network side chain. You won't have to wait for 10 minutes for miners to create a block. Or we can have privacy in our transactions by Zerocash side chain. If you want privacy, you send your bitcoin to sidechain and use Zerocash protocol for sending bitcoin to your recipient. This protocol makes your transaction not to be seen in the transaction history, at the same time it won't damage the integrity and security of the Bitcoin. If you use Zerocash protocol in your sidechain, you cannot be tracked anymore. By the way, test results say that its performance is very poor now, but I believe it will be better in the near future.

Blockchain was invented by Satoshi Nakamoto in 2008 to serve as the public transaction ledger of the cryptocurrency bitcoin.[1] The invention of the blockchain for bitcoin made it the first digital currency to solve the double-spending problem without the need of a trusted authority or central server. The bitcoin design has inspired other applications,[1][3] and blockchains which are readable by the public are widely used by cryptocurrencies. Private blockchains have been proposed for business use. Some marketing of blockchains has been called "snake oil".[9]
Bitcoin está demostrando un potencial enorme, y desarrolladores de todo el mundo quieren llevar esta tecnología aún más lejos, por ejemplo con los smart contracts turing completo o las llamadas smart property. El problema es que Bitcoin tiene un lenguaje de programación deliberadamente limitado. Además sus transacciones se confirman relativamente despacio, cada 10 minutos. Y ya por último y muy importante, su cadena de bloques está saturándose de transacciones debido a la creciente fama de Bitcoin.
So if you want to create a more secure Sidechain, we would seriously need to have a look at incentivizing miners in other ways. These could include things such as the Sidechain raising outside funding from investors in order to pay the miners. Staggering mining award so miners have an incentive to keep mining as they will be paid later on rather than at the time or the Sidechain could issue its own mining award on top of the already existing transaction fees and essentially just become an Altcoin.
The original Litecoin we started out with are now Rootstock Litecoin, which I can use for creating smart contracts and as previously mentioned Sidechains can exist for all types of digital assets with propositions of not only smart contracts but the ability to provide more freedom for experimentation with Beta releases of core software and Altcoins, as well as the taking over of traditional banking instruments such as the issuing and tracking of shares, bonds and other assets.
By the end of this post, you’ll be able to freely participate in conversations like the above. This is not a coding tutorial, as we’ll just be presenting important concepts at a high level. However, we may follow up with programming tutorials on these ideas. This article will be helpful to both programmers and non-programmers alike. Let’s get going!
Things get a bit more interesting when you replace the single custodian with a federation of notaries by way of a multisignature address. In this model, a federation of entities must sign-off on movements to and from the sidechain, so more parties must be compromised for a failure situation to unfold where the bitcoins frozen on the main chain are stolen.

iQlance is a team of extremely passionate and creative designers, developers and Testers. We strongly believe in culture of developing your passion indulge in your career . we have designers who finds life in your dream and developers who actually bring this life into existence. Having a splendid website & interactive app is indispensable for an intense business growth. Company aspires professionals to achieve their business goals throu ... Read more

Segregated Witnesses — The current Bitcoin transaction signature algorithm is complicated and flawed, leading to a problem known as transaction malleability. Segregated witnesses would eliminate that, improving the efficiency of much Bitcoin software considerably … and making much more significant innovations such as the Lightning Network (see below) possible.
Sidechains have been a concept for a relatively long time in the cryptocurrency space. The idea took flight in 2014 when several eminent figures in cryptography and early digital currency innovations published an academic paper introducing Pegged Sidechains. Several of the authors are central figures at Blockstream, who is at the forefront of innovation in sidechains and other Bitcoin developments.
The problem with Ethereum is that transactions are executed one after another. However, Aelf differs in its parallel computing blockchain capability. It scales transaction computing power inside a single side chain. Now imagine the power when you have thousands of side chains. For any unrelated transactions, it is safe to execute them concurrently.
Eris Industries, aims to be the provider of shared software database using blockchain technology. Blockstack, aims to provide financial institutions back office operations, including clearing & settlement on a private blockchain. Multichain, provider an open source distributed database for financial transactions. Chain Inc., a provider of blockchain API's. Chain partnered with Nasdaq OMX Group Inc., to provide a platform that enables trading private company shares with the blockchain.
At Iryo, we consider databases and blockchains that are not opened to the public to be insecure they, can easily be altered by the business running it, at their discretion and it goes against the ethos of the open and transparent cryptocurrency space. Designed to keep public out and introducing “trusted” middlemen, private chains forget that trusted third parties are security holes.
Cabe destacar el papel de la gente de Blockstream, una de las compañías centradas en la búsqueda de este objetivo (con un extremeño en sus filas, Jorge Timón). Blockstream está trabajando actualmente en el desarrollo de un protocolo que permita crear sidechains. Son los responsables de uno de los papers más conocidos sobre el tema, publicado en Octubre del 2014:
The Cryptocurrency Data Feed, a partnership between Blockstream and Intercontinental Exchange (ICE), offers traders best in class real-time and historical cryptocurrency data from a strong and growing list of exchange partners worldwide. With over 25 exchanges, 133 crypto and fiat currency pairs, and over 200M order book updates every day, the Cryptocurrency Data Feed is the most comprehensive and robust source of global cryptocurrency data.
I have a hard time swallowing that Bitcoin “isn’t a ledger”. That’s like saying “Bitcoin isn’t the blockchain”, and if you take the blockchain away from Bitcoin, you aren’t really left with much (including, sidechains). Perhaps Bitcoin isn’t a ledger *from the perspective* of individual transactions, but by the same logic, nothing that isn’t transaction data is.
S-PRO offers custom cross-platform mobile app development services and Blockchain development. We provide full cycle development solutions for Startups and small businesses. During years of MVP development we create our own flow how to turn idea into a valuable product. React Native is a core technology that we use in mobile development. Also our team know how to use Blockchain technology on your prolect. We use blockchain-based ledgers, ident ... Read more
• ‘Difficulty’: In the Bitcoin network, miners solve an asymmetric cryptographic puzzle to mine new blocks. Over time the puzzle becomes easier, resulting in it eventually taking less than 10 minutes for each new block generation. Hence, the community updates the puzzle every 14 days and makes it more difficult, thus requiring even more computing power to handle the POW algorithm. The ‘difficulty’ parameter controls the complexity of the cryptographic puzzle. This parameter is also used in the Ethereum blockchain as well. Developers should assign a low value (between 0-10,000) to this parameter for this project thus enabling quicker mining.
The consensus mechanism is centralized in the hands of a single entity which mission is to verify and add all transactions to the blockchain. A network based on a private blockchain, therefore does not need to use a mechanism such as “Proof of Work” or “Proof of Stake” which are complicated to implement and expensive. The problems of security being much more simple in the case of private blockchains, it is possible to apply the mechanisms of consensus lighter, more effective and therefore easy to deploy such that the BFT.
Private blockchains are valuable for solving efficiency, security and fraud problems within traditional financial institutions, but only incrementally. It’s not very likely that private blockchains will revolutionize the financial system. Public blockchains, however, hold the potential to replace most functions of traditional financial institutions with software, fundamentally reshaping the way the financial system works.
Blockstream has also released an “Alpha” sidechain with all of those features up and running except the last, coupled to the Bitcoin testnet. (Used for testing Bitcoin software without putting real value at risk.) In the absence of the Bitcoin protocol change that will cryptographically secure the programmatic transfer of value between Bitcoin and sidechains, they’re cooperating with several external organizations to perform and validate those transfers. If and when that protocol change happens, though, pegged sidechains will be as permissionless, and as decentralized, as Bitcoin itself.
– A cost per transactions which can be high: Miners only participate in the process of mining because they hope to get the reward (coinbase and fees) allocated to minors who have added a block to the blockchain. For them it is a business, this reward will finance the costs they have incurred in the process of mining (electricity, computer equipment, internet connection). Tokens that are distributed to them are directly issued by the Protocol, but the fees are supported by the users. In the case of the bitcoin, for example, minors receive 12.5 bitcoins for each block added, to which are added fees paid by the users to add their transactions to the blocks. These fees are variable and the higher the demand to add transactions, the higher the fees.
Applicature is a blockchain development agency focused on strategic consulting and implementation of Blockchain projects. We provide A-Z ICO launching services: ICO Marketing, technical strategy, concept, white paper, token mechanics, Blockchain architecture, suite of ICO Smart Contracts, ICO Investor Cabinets and a wide range of custom Blockchain solutions: Blockchain Proof of Concepts, forks of different Blockchains with their maintenance, wall ... Read more
thank you for the clear explanation of this. so in essence, by locking bitcoins to a particular address we’ve created an asset (collateral). then on the other sidechain (marketplace) we get issued shares against the asset, which we can sell. anyone holding a share can then redeem it against the asset. I think that’s an analogy that finance types would get
This approach isn’t fool-proof, but it’s not by mistake that the system looks the way it does today (that’s my history degree talking). Despite best technical efforts, human problems remain within the realm of probability. From “…blame cannot be easily assigned: not even the most sophisticated economists of the era could accurately predict disaster, let alone guard against it. The effects of a public herd mentality at the time of the [insert catastrophe here] are depicted, all too recognizably, as unstoppable.”
@gendal, good question. Think of the identity hash as a bitcoin address, it is indeed public. So to assert anything with this identity you need to sign the object you are creating or changing with the identity’s private key. Specifically it is a private key that corresponds to a public key that you published in your identity’s object (json). The signature is not placed on the bitcoin transaction, as OP_RETURN has only 40 bytes. The signature is added to a [json] object that is modified with this identity. If you see any fault with this, please let me know.
If you want a deeper look at Proof of Stake check out our detailed POS post. In short, while Proof of Work is an effective mechanism to secure the blockchain and provides a trustless consensus paradigm, it’s extremely energy intensive because of all the computing power required to solve hash problems. Also, while it was meant to be decentralized, it’s actually becoming more centralized as miners consolidate and massive mining setups eat up larger shares of winning blocks.
– we provide no uniqueness of names, unlike the domain registrars, social networks, namecoin,, etc. There is no uniqueness of names in real life either. Instead the identity is just a hash of a [json] object that contains a public key. Identity object can not be modified directly, but a new version of it can be created, pointing to a previous version. The owner of the identity object can optionally connect it with the real life credentials, e.g. the social account, internet domain, email, etc. by proving the proof of ownership of that account the way does it, the way Google Analytics does it, etc. This allows a spectrum of identities from fully anonymous to fully disclosed and verified. This also allows a person to have multiple identities, for work, for social, for gaming, for interest-specific forums. To simulate OAUTH2, a new site-specific identity can be created and signed with person’s other identity.
Blockchains that are private or permissioned work similarly to public blockchains but with access controls that restrict those that can join the network, meaning it operates like a centralised database system of today that limits access to certain users. Private Blockchains have one or multiple entities that control the network, leading to the reliance on third-parties to transact. A well-known example would be Hyperledger.