“Given all of this, it may seem like private blockchains are unquestionably a better choice for institutions. However, even in an institutional context, public blockchains still have a lot of value, and, in fact, this value lies to a substantial degree in the philosophical virtues that advocates of public blockchains have been promoting all along, among the chief of which are freedom, neutrality and openness.” 
Alpha functions as a sidechain to Bitcoins testnet. The peg mechanism currently works through a centralized protocol adapter, as stated in the sidechains whitepaper. An auditable federation of signers manages Testnet coins transferred to the sidechain. The federation is also relied upon to produce blocks through the signed blocks element. This creates the possibility of exploring the possibilities of the new chain using different security trade-offs.
The cheapest and most simple option is doing calculations on your local network (off-chain) and integrating with main blockchain by sending the results. It has flaws; you cannot live full advantage of blockchain as we do in bitcoin, because you will still have existing constraints of your current system. Despite all this, it is still a valid option; perhaps you won't need all the features of blockchain technology. Perhaps it is just enough to use blockchain only for your pain points. Factom can be considered under that kind of option. They used bitcoin wisely in their design. They hold the actual mass data in their network and utilize stability of bitcoin in their solution. This project is so successful that at coindesk magazine, it is saying that Factom can be used for the land titles in Honduras. http://www.coindesk.com/debate-f...
– The manipulation of the blockchain: It is indeed possible to come back at any time on the transactions that have already been added to the blockchain and therefore change the balance of the members. In a public blockchain, such operation would require that 51% of the hashing power (i.e capacity to mine) is concentrated in the hands of the same entity. This not theory anymore since it happened beginning 2014 when the cooperative of GHash minor reached the 51% threshold.
And now for the second clever part. The logic above is symmetric. So, at any point, whoever is holding these coins on the sidechain can send them back to the Bitcoin network by creating a special transaction on the sidechain that immobilises the bitcoins on the sidechain. They’ll disappear from the sidechain and become available again on the Bitcoin network, under the control of whoever last owned them on the sidechain.
– The transactions added to the blockchain are public: the whole world (Member of the network as non-members) can access transactions that are added to the blockchain. The information of the transactions is made public for the miners who do not know the other members, to check the conformity (for example that the person who has created a transaction holds enough bitcoins). These transactions are obviously not nominative, only your public key appears, but if someone knows your public key, he will be able to find all the transactions that you have created.
As we’ve talked about, writing to the blockchain is slow and expensive. This is because every node in the entire network needs to verify and slurp in the whole blockchain and all the data it contains. Executing a large smart contract on a blockchain can be prohibitively expensive, and doing things like storing images on blockchains is economically infeasible.
Sidechains interactuando con blockchain. Blockstream explica en su paper como, a las sidechains, se les añade una nueva pieza llamada two-way peg. Two-way peg es “el conector” entre ambas cadenas y se encarga de hacer la “magia” para que los bitcoins “salten” a la otra cadena. Juntando ambas cosas obtenemos las pegged sidechain: cadenas laterales conectadas en todo momento. En la imagen puedes observar como, incluso, las sidechain pueden interactuar entre ellas. ¿Llegaremos a un escenario de blockchains interactuando con aspecto fractal?
Confidential Transactions — At present, all Bitcoin transactions are completely public, albeit pseudonymous. Confidential Transactions, as the name implies, conceal the amount being transferred to all except the sender, the recipient, and others they designate. The resulting transaction size is significantly larger, but includes a sizable “memo” field that can be used to store transaction or other metadata, and is still smaller than eg Zerocoin.(Note that this isn’t as confidential as Zerocash, which conceals both the amount and the participants involved in any transaction, through the mighty near-magic of zk-Snarks. Mind you, Zerocash would require an esoteric invocation ritual to initiate its network. No, really. But that’s a subject for a separate post.)
The immense promise and accelerated development of permissioned blockchain technology, combined with intense business interest from a wide range of industries, is acting as a perfect stimulant for more and more enterprises to start rolling out blockchain networks into production. I envision these permissioned networks will soon directly or indirectly influence every facet of human enterprise.
×