Many people believe this is the future of the blockchain. It maintains network security and allows for scalability. The biggest criticism is that it heavily favors those with more funds as smaller holders have no chance of becoming witnesses. But the reality is, smaller players have no hope of participating in Proof of Work either, as mining from your own laptop at home is no longer a reality. Smaller players get outcompeted by bigger players who have massive mining rigs. STEEM and EOS are examples of DPOS blockchains. Even Ethereum is moving to POS with its Casper project.
Parangat Technologies stands tall amongst mobile app development giants. Parangat team of top iPad developers pays special attention to communication and requirement analysis in order to understand project complexity which leads to the foundation of a great application/game and helps in creating long term value for the iPad app user as well as our clients. It has the satisfaction of being one of the leading names in enterprise-level apps devel ... Read more

It is different with a private blockchain (or closed) since the members of the network are selected before being able to download the protocol and therefore use the proposed service by the network. The mining capabilities and the system of consensus as a whole are centralized within the hands of the same entity. A network based on a private blockchain is therefore not decentralized in itself.


Cabe destacar el papel de la gente de Blockstream, una de las compañías centradas en la búsqueda de este objetivo (con un extremeño en sus filas, Jorge Timón). Blockstream está trabajando actualmente en el desarrollo de un protocolo que permita crear sidechains. Son los responsables de uno de los papers más conocidos sobre el tema, publicado en Octubre del 2014:
Jump up ^ Redrup, Yolanda (29 June 2016). "ANZ backs private blockchain, but won't go public". Australia Financial Review. Archived from the original on 3 July 2016. Retrieved 7 July 2016. Blockchain networks can be either public or private. Public blockchains have many users and there are no controls over who can read, upload or delete the data and there are an unknown number of pseudonymous participants. In comparison, private blockchains also have multiple data sets, but there are controls in place over who can edit data and there are a known number of participants.
Nodes can be trusted to be very well-connected, and faults can quickly be fixed by manual intervention, allowing the use of consensus algorithms which offer finality after much shorter block times. Improvements in public blockchain technology, such as Ethereum 1.0's uncle concept and later proof of stake, can bring public blockchains much closer to the "instant confirmation" ideal (eg. offering total finality after 15 seconds, rather than 99.9999% finality after two hours as does Bitcoin), but even still private blockchains will always be faster and the latency difference will never disappear as unfortunately the speed of light does not increase by 2x every two years by Moore's law.

The sole distinction between public and private blockchain is related to who is allowed to participate in the network, execute the consensus protocol and maintain the shared ledger. A public blockchain network is completely open and anyone can join and participate in the network. The network typically has an incentivizing mechanism to encourage more participants to join the network. Bitcoin is one of the largest public blockchain networks in production today.
×