Sidechains interactuando con blockchain. Blockstream explica en su paper como, a las sidechains, se les añade una nueva pieza llamada two-way peg. Two-way peg es “el conector” entre ambas cadenas y se encarga de hacer la “magia” para que los bitcoins “salten” a la otra cadena. Juntando ambas cosas obtenemos las pegged sidechain: cadenas laterales conectadas en todo momento. En la imagen puedes observar como, incluso, las sidechain pueden interactuar entre ellas. ¿Llegaremos a un escenario de blockchains interactuando con aspecto fractal?
“Further, contribution is weighted by computational power rather than one threshold signature contribution per party, which allows anonymous membership without risk of a Sybil attack (when one party joins many times and has disproportionate input into the signature). For this reason, the DMMS has also been described as a solution to the Byzantine Generals Problem[AJK05].”
Recordemos, como hemos mencionado anteriormente, que actualmente son cientos los proyectos y monedas alternativas que trabajan con su propia cadena de bloques, totalmente desconectadas de la de Bitcoin. Todas con su cotización volatil. El problema de estas monedas es que ninguna de ellas dispone del efecto red ni de la seguridad que sí tiene Bitcoin. De hecho muchas, pese a haber implementado propuestas interesantes, se quedan en nada, con miles de horas y esfuerzo “tirado a la basura”. Incluso algunas de ellas han replicado el codigo de Bitcoin, pero también los fallos que en ese momento pudiera tener y mientras que en Bitcoin si se han solucionado, en esa Altcoin no.
Smart contracts are immutable pieces of code and their outcomes are irreversible. Hence, formal verification of their code is very important before deploying them. It’s very hard to verify smart contracts in the Ethereum Virtual Machine (EVM). A business can’t afford to deploy faulty but immutable smart contracts and suffer the consequences of their irreversible outcome. This article details the challanges: “Fundamental challenges with public blockchains”.
This approach isn’t fool-proof, but it’s not by mistake that the system looks the way it does today (that’s my history degree talking). Despite best technical efforts, human problems remain within the realm of probability. From http://www.nytimes.com/2009/01/15/books/15masl.html: “…blame cannot be easily assigned: not even the most sophisticated economists of the era could accurately predict disaster, let alone guard against it. The effects of a public herd mentality at the time of the [insert catastrophe here] are depicted, all too recognizably, as unstoppable.”
A consortium blockchain is part public, part private. This split works at the level of the consensus process: on a consortium chain, a pre-selected group of nodes control the consensus process, but other nodes may be allowed to participate in creating new transactions and/or reviewing it. The specific configuration of each consortium chain (i.e., which nodes have the power to authorize transactions via the consensus process, which can review the history of the chain, which can create new transactions, and more) is the decision of each individual consortium.
Private institutions like banks realized that they could use the core idea of blockchain as a distributed ledger technology (DLT), and create a permissioned blockchain (private or federated), where the validator is a member of a consortium or separate legal entities of the same organization. The term blockchain in the context of permissioned private ledger is highly controversial and disputed. This is why the term distributed ledger technologies emerged as a more general term.
This segment is where we have seen the most rapid metamorphosis in the past year, mostly in financial services. These solutions are industry-specific, and they are based on private blockchain or ledger infrastructures. A caveat here is that some of these are not full blockchains. Rather, they are distributed ledgers, which are a subset of blockchain capabilities. And some don’t even include a consensus element, which takes the implementation another level down from distributed ledger tech.

Another technology that could see more widespread use in the coming years is side chains. A side chain is defined for one specific use case. There can be multiple side chains where different tasks are distributed accordingly for improving the efficiency of processing. Maybe one application needs to optimize for high speeds and another needs to optimize for large computations. In any case, side chains can be used to handle commercial blockchain usage. CryptoKitties would have greatly benefitted from an optimized high-speed side chain. At one point, they jammed up the Ethereum blockchain with 25% of all transactions coming from their application.


What is the difference between a public blockchain and a private blockchain? Does it matter? Which is better? Gallactic believes that currently there are pros and cons between both Private and Public Blockchains, but time and “convergence”, a term that is gaining prominence in the Blockchain Industry, is clearly showing that the lines between these categories, once clear, are starting to fade.
×