The ShipChain platform unifies shipment tracking on the Ethereum blockchain, using a sidechain to track individual encrypted geographic waypoints across each smart contract. With this system, the meaning of each cryptographic waypoint is only accessible for interpretation by the parties involved in the shipment itself. This gives shippers more visibility across their supply chain, and allows carriers to communicate with ease.
Put simply, sidechaining is any mechanism that allows tokens from one blockchain to be securely used within a completely separate blockchain but still moved back to the original chain if necessary. By convention the original chain is normally referred to as the "main chain", while any additional blockchains which allow users to transact within them in the tokens of the main chain are referred to as "sidechains". For example, a private Ethereum-based network that had a linkage allowing ether to be securely moved from the public Ethereum main chain onto it and back would be considered to be a sidechain of the public network.
@tetsu – not sure what you mean. My reading of the sidechains paper is that the worst case scenario is that an attacker manages to “reanimate” Bitcoins on the main blockchain that had been sent to the sidechain… but that would be the attacker stealing the coins from the rightful owner on the sidechain. From Bitcoin’s perspective, the coins were always going to be reanimated…. so the risk is entirely borne by the holder(s) on the sidechain. Am I missing something?
In September 2015, the first peer-reviewed academic journal dedicated to cryptocurrency and blockchain technology research, Ledger, was announced. The inaugural issue was published in December 2016.[91] The journal covers aspects of mathematics, computer science, engineering, law, economics and philosophy that relate to cryptocurrencies such as bitcoin.[92][93]

The two-way peg is the mechanism for transferring assets between sidechains and is set at a fixed or predefined rate. Bitcoin’s Dynamic Membership Multi-Party Signature (DMMS) plays a vital role in the functionality of the two-way peg. The DMMS is one of Bitcoin’s lesser known but incredibly important components. It is a group digital signature — composed of the block headers in Bitcoin — that has no fixed size due to the computationally powered PoW nature of its blockchain. The Pegged Sidechain paper further describes it as:


Sometimes separate blocks can be produced concurrently, creating a temporary fork. In addition to a secure hash-based history, any blockchain has a specified algorithm for scoring different versions of the history so that one with a higher value can be selected over others. Blocks not selected for inclusion in the chain are called orphan blocks.[22] Peers supporting the database have different versions of the history from time to time. They keep only the highest-scoring version of the database known to them. Whenever a peer receives a higher-scoring version (usually the old version with a single new block added) they extend or overwrite their own database and retransmit the improvement to their peers. There is never an absolute guarantee that any particular entry will remain in the best version of the history forever. Because blockchains are typically built to add the score of new blocks onto old blocks and because there are incentives to work only on extending with new blocks rather than overwriting old blocks, the probability of an entry becoming superseded goes down exponentially[23] as more blocks are built on top of it, eventually becoming very low.[1][24]:ch. 08[25] For example, in a blockchain using the proof-of-work system, the chain with the most cumulative proof-of-work is always considered the valid one by the network. There are a number of methods that can be used to demonstrate a sufficient level of computation. Within a blockchain the computation is carried out redundantly rather than in the traditional segregated and parallel manner.[26]

Incorporated in 2009 and headquartered in the USA, Techtic Solutions Inc. is an leading web and mobile app development company known for delivering innovative solutions for any complex problem. Our mission remains the same; “PRODUCE UNPARALLELED TECH ENABLED SOLUTIONS BENCHMARKING LATEST TECHNOLOGY STANDARDS” Facts & Figures: A service provider in over 30 countries with offices in: USA & India 250+ mobile applicatio ... Read more


Every node in a decentralized system has a copy of the blockchain. Data quality is maintained by massive database replication[8] and computational trust. No centralized "official" copy exists and no user is "trusted" more than any other.[4] Transactions are broadcast to the network using software. Messages are delivered on a best-effort basis. Mining nodes validate transactions,[22] add them to the block they are building, and then broadcast the completed block to other nodes.[24]:ch. 08 Blockchains use various time-stamping schemes, such as proof-of-work, to serialize changes.[34] Alternative consensus methods include proof-of-stake.[22] Growth of a decentralized blockchain is accompanied by the risk of centralization because the computer resources required to process larger amounts of data become more expensive.[35]
Always there is a balance in nature, even in blockchains. If you want to have extra features, you need to make a sacrifice from your current features. For example to have high speed and volume; you need to give some from your security & immutability by doing consensus with smaller groups or you need to use different methods in consensus like POS / PBFT. (Proof of Stake / Practical Byzantine Fault Tolerance)

Zfort Group is a Full Service IT provider. We offer comprehensive and cost-effective web & mobile solutions: from consulting and website planning to application launch and support, serving businesses across the globe since 2000. Our highly motivated team includes 196 specialists in the following areas: PHP, ASP.NET, JavaScript, UI/UX Design, HTML/CSS, Quality Assurance, iOS and Android development.
Blockstream recently released a whitepaper on “strong federations,” which is essentially their vision of a federated two-way peg system. Liquid is a sidechain created by Blockstream that uses the strong federations model. The sidechain is used to transfer bitcoins between centralized bitcoin institutions, such as exchanges, at a faster pace than the public Bitcoin blockchain.

Loom Network is a Platform as a Service built on top of Ethereum that allows developers to run large-scale decentralized applications. This lets developers build DApps with the trust and security of the world’s most secure public blockchain, along with the computing resources necessary to run commercial-scale services. Like how Filecoin tokenized disk space, Loom aims to be the tokenized application protocol of the new decentralized web.
“Given all of this, it may seem like private blockchains are unquestionably a better choice for institutions. However, even in an institutional context, public blockchains still have a lot of value, and, in fact, this value lies to a substantial degree in the philosophical virtues that advocates of public blockchains have been promoting all along, among the chief of which are freedom, neutrality and openness.” 

Sidechains with specific purposes could be formed with specific features while still enjoying the widespread adoption and value that Bitcoin holds.  Most importantly it can add these features without consensus from the Bitcoin community. Sidechains have the potential to replace many Cryptocurrencies as it allows features that were previously unique to these currencies to be available on Bitcoin. It also allows developers to experiment with sidechains and scope its full potential while still keeping coins linked to Bitcoin.
“Blockchain offers a possible solution to these challenges with its decentralized ledger that can store a history of transactions across a shared database,” Cohen said in the report. “By making the record accessible and verifiable from anywhere in the world, blockchain can enable the authentication of goods and eradicate the criminal element of counterfeit goods in the retail supply chain. By pairing hardware chips with blockchain technology, a product can take on a digital history, going as far back as the raw materials that were used to make the product. This allows retailers and consumers to verify their purchased products are genuine.”
Let’s switch gears quickly before we get back to talking about trust mechanisms. We’ll define what a “smart contract” is. The first blockchain that was popularized is obviously the Bitcoin blockchain. But the functionality of Bitcoin is very limited. All it can do is record transaction information. It’s only useful to keep track of the fact that Alice sent Bob 1 Bitcoin.
Open blockchains are more user-friendly than some traditional ownership records, which, while open to the public, still require physical access to view. Because all early blockchains were permissionless, controversy has arisen over the blockchain definition. An issue in this ongoing debate is whether a private system with verifiers tasked and authorized (permissioned) by a central authority should be considered a blockchain.[36][37][38][39][40] Proponents of permissioned or private chains argue that the term "blockchain" may be applied to any data structure that batches data into time-stamped blocks. These blockchains serve as a distributed version of multiversion concurrency control (MVCC) in databases.[41] Just as MVCC prevents two transactions from concurrently modifying a single object in a database, blockchains prevent two transactions from spending the same single output in a blockchain.[42]:30–31 Opponents say that permissioned systems resemble traditional corporate databases, not supporting decentralized data verification, and that such systems are not hardened against operator tampering and revision.[36][38] Nikolai Hampton of Computerworld said that "many in-house blockchain solutions will be nothing more than cumbersome databases," and "without a clear security model, proprietary blockchains should be eyed with suspicion."[9][43]
In this case, you work directly with the given blockchain tools and stack. Assembly is required, so this isn’t for the faint of heart at this point, as many of the technologies are still developing and evolving. However, working directly with the blockchain provides a good degree of innovation, for example in building decentralized applications. This is where entrepreneurs are creating ambitious end-to-end, peer-to-peer applications, such as OpenBazaar (on Bitcoin), or Ujo Music (on Ethereum).
In some cases, these advantages are unneeded, but in others they are quite powerful - powerful enough to be worth 3x longer confirmation times and paying $0.03 for a transaction (or, once scalability technology comes into play, $0.0003 for a transaction). Note that by creating privately administered smart contracts on public blockchains, or cross-chain exchange layers between public and private blockchains, one can achieve many kinds of hybrid combinations of these properties. The solution that is optimal for a particular industry depends very heavily on what your exact industry is. In some cases, public is clearly better; in others, some degree of private control is simply necessary. As is often the case in the real world, it depends.
A company called Blockstream has been focusing on these developments and has announced the release of Sidechain Elements, which is an open-sourced framework for sidechain development. It includes a functioning code and a testing environment for working with sidechains with several components: the core network software to build an initial testing sidechain, eight new features not currently supported by bitcoin, a basic wallet and the code for moving coins between blockchains.
Consortium blockchains: a consortium blockchain is a blockchain where the consensus process is controlled by a pre-selected set of nodes; for example, one might imagine a consortium of 15 financial institutions, each of which operates a node and of which 10 must sign every block in order for the block to be valid. The right to read the blockchain may be public, or restricted to the participants, and there are also hybrid routes such as the root hashes of the blocks being public together with an API that allows members of the public to make a limited number of queries and get back cryptographic proofs of some parts of the blockchain state. These blockchains may be considered "partially decentralized".
Zfort Group is a Full Service IT provider. We offer comprehensive and cost-effective web & mobile solutions: from consulting and website planning to application launch and support, serving businesses across the globe since 2000. Our highly motivated team includes 196 specialists in the following areas: PHP, ASP.NET, JavaScript, UI/UX Design, HTML/CSS, Quality Assurance, iOS and Android development.

Pegged sidechains employ a two-way peg to transfer assets between chains, and they consist of providing proof of possession in the transferring transactions. The idea is to enable the capability of locking an asset on an original parent chain, which can then be transferred to a sidechain before eventually being redeemed on the original chain. Notably, the original asset on the parent chain is locked in a specific output address and is not destroyed like early implementations of sidechains.
Zfort Group is a Full Service IT provider. We offer comprehensive and cost-effective web & mobile solutions: from consulting and website planning to application launch and support, serving businesses across the globe since 2000. Our highly motivated team includes 196 specialists in the following areas: PHP, ASP.NET, JavaScript, UI/UX Design, HTML/CSS, Quality Assurance, iOS and Android development.

The two-way peg is the mechanism for transferring assets between sidechains and is set at a fixed or predefined rate. Bitcoin’s Dynamic Membership Multi-Party Signature (DMMS) plays a vital role in the functionality of the two-way peg. The DMMS is one of Bitcoin’s lesser known but incredibly important components. It is a group digital signature — composed of the block headers in Bitcoin — that has no fixed size due to the computationally powered PoW nature of its blockchain. The Pegged Sidechain paper further describes it as:
Start mining on node 1 by using the function miner.start(1), where 1 refers to the number of threads. Note that the miner.start(n) function will always return "null." Unless you have many CPU cores, keep the thread number low to avoid high CPU usage. Note that mining without any pending transaction can still earn your default account incentive (ETH). It creates empty blocks, thus strengthening the integrity of the blockchain tree.
“What is private blockchain?” is a logical question to ask after you found out that there is no such thing as one transcendental blockchain. What makes private networks different from the public is that only a selected group of people can access them. Hence, a random person has no chance to join a private ledger all of a sudden. To do so, a new participant needs an invitation or permission that can be issued by:
The NPD report noted IBM is partnering with nine retailers and food companies (Walmart, Unilever, Nestle, Dole, Tyson Foods, Golden State Foods, McCormick & Co., McLane Co., and Driscoll’s) to revamp data management processes with blockchain. Walmart uses blockchain in China to source its pork all the way from the pig to the customer. This enables the retailers to provide transparency to all the players along the supply chain.
The Bitcoin Blockchain is a game changer, because it is public and permissionless. Anyone in the world can download the open source code, and can start verifying transaction, being rewarded with bitcoin, through a concept called mining. All stakeholders in the bitcoin network, who do not know and trust each other, are coordinated through an economical incentive framework pre-defined in the protocol and auto enforced by machine consensus of the P2P Network. The smart contract in the blockchain protocol therefore  provides an coordination framework for all network participants, without the use of traditional legal contracts. In private and permissioned blockchain, all network participants validating transactions are known. Bilateral or multilateral legal agreements provide a framework for trust, not the code.
Sometimes separate blocks can be produced concurrently, creating a temporary fork. In addition to a secure hash-based history, any blockchain has a specified algorithm for scoring different versions of the history so that one with a higher value can be selected over others. Blocks not selected for inclusion in the chain are called orphan blocks.[22] Peers supporting the database have different versions of the history from time to time. They keep only the highest-scoring version of the database known to them. Whenever a peer receives a higher-scoring version (usually the old version with a single new block added) they extend or overwrite their own database and retransmit the improvement to their peers. There is never an absolute guarantee that any particular entry will remain in the best version of the history forever. Because blockchains are typically built to add the score of new blocks onto old blocks and because there are incentives to work only on extending with new blocks rather than overwriting old blocks, the probability of an entry becoming superseded goes down exponentially[23] as more blocks are built on top of it, eventually becoming very low.[1][24]:ch. 08[25] For example, in a blockchain using the proof-of-work system, the chain with the most cumulative proof-of-work is always considered the valid one by the network. There are a number of methods that can be used to demonstrate a sufficient level of computation. Within a blockchain the computation is carried out redundantly rather than in the traditional segregated and parallel manner.[26]
AppTrait Solutions, are not just a mobile app development company but a full-fledged network in itself that is well-versed with the latest market trends and technological advancements. We are also a home to skilled techs that connect with customers and their businesses like you to make change happen. We offer all latest solutions in terms of mobile application development. Our team is well-versed in iOS and Android operating systems and ... Read more
2) Yea, blockchain could be a suboptimal MQ Series, a slower append only persistent wire that has a lot of ready-made tools for audit and security analysis (ecosystem argument). As blockchain ecosystem grows all kinds of data transformation tools will appear (e.g. we are working on such). Inside blockchain could be tuned to be less PoW intensive and to cut blocks faster. Besides, the variations of PoS or a hybrid PoW + PoS scheme are emerging which could use the fact that inside, as you say, all network participants can have clear identities, unlike on the public bitcoin’s blockchain.
Things get a bit more interesting when you replace the single custodian with a federation of notaries by way of a multisignature address. In this model, a federation of entities must sign-off on movements to and from the sidechain, so more parties must be compromised for a failure situation to unfold where the bitcoins frozen on the main chain are stolen.
If you want a deeper look at Proof of Stake check out our detailed POS post. In short, while Proof of Work is an effective mechanism to secure the blockchain and provides a trustless consensus paradigm, it’s extremely energy intensive because of all the computing power required to solve hash problems. Also, while it was meant to be decentralized, it’s actually becoming more centralized as miners consolidate and massive mining setups eat up larger shares of winning blocks.
The immense promise and accelerated development of permissioned blockchain technology, combined with intense business interest from a wide range of industries, is acting as a perfect stimulant for more and more enterprises to start rolling out blockchain networks into production. I envision these permissioned networks will soon directly or indirectly influence every facet of human enterprise.
×